scholarly journals State Estimation for Discrete-Time Takagi-Sugeno Fuzzy Systems with Time-Varying Delays

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ting Lei ◽  
Qiankun Song ◽  
Yurong Liu

The state estimation problem is investigated for discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals and employing matrix inequality technique, a delay-dependent linear matrix inequalities (LMIs) criterion is developed to estimate the systems state with some observed output measurements such that the error-state system is globally asymptotically stable. An example with simulations is given to show the effectiveness of the proposed criterion.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Liang ◽  
Zengshun Chen ◽  
Qiankun Song

The state estimation problem is investigated for neural networks with leakage delay and time-varying delay as well as for general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing matrix inequality techniques, a delay-dependent linear matrix inequalities (LMIs) condition is developed to estimate the neuron state with some observed output measurements such that the error-state system is globally asymptotically stable. An example is given to show the effectiveness of the proposed criterion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ting Lei ◽  
Qiankun Song ◽  
Zhenjiang Zhao

The passivity for discrete-time stochastic T-S fuzzy systems with time-varying delays is investigated. By constructing appropriate Lyapunov-Krasovskii functionals and employing stochastic analysis method and matrix inequality technique, a delay-dependent criterion to ensure the passivity for the considered T-S fuzzy systems is established in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. An example is given to show the effectiveness of the obtained result.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Qiankun Song ◽  
Jinde Cao

The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in linear matrix inequality (LMI), which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness of the proposed criteria. It is noteworthy that because neither model transformation nor free-weighting matrices are employed to deal with cross terms in the derivation of the dissipativity criteria, the obtained results are less conservative and more computationally efficient.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Lei ◽  
Zengshun Chen ◽  
Qiankun Song ◽  
Zhenjiang Zhao

The passivity and passification for Takagi-Sugeno (T-S) fuzzy systems with leakage delay and both discrete and distributed time-varying delays are investigated. By employing the Lyapunov functional method and using the matrix inequality techniques, several delay-dependent criteria to ensure the passivity and passification of the considered T-S fuzzy systems are established in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. The obtained results generalize some previous results. Two examples are given to show the effectiveness of the proposed criteria.


Author(s):  
K. Mathiyalagan ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper is concerned with the asymptotic stability issue for a class of stochastic Takagi–Sugeno (TS) fuzzy systems with time-varying delays. Then, by utilizing a delay-fractioning method, the stochastic analysis theory combined with the matrix inequality technique, a new set of sufficient condition in terms of linear matrix inequalities is presented which ensures the asymptotic stability of the stochastic TS fuzzy systems with time-delays. The results obtained in this paper are delay-dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are given to illustrate the effectiveness and less conservativeness of the obtained results.


Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


Sign in / Sign up

Export Citation Format

Share Document