scholarly journals Online Sequential Prediction for Nonstationary Time Series with New Weight-Setting Strategy Using Extreme Learning Machine

2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Wentao Mao ◽  
Jinwan Wang ◽  
Liyun Wang ◽  
Mei Tian

Accurate and fast prediction of nonstationary time series is challenging and of great interest in both practical and academic areas. In this paper, an online sequential extreme learning machine with new weighted strategy is proposed for nonstationary time series prediction. First, a new leave-one-out (LOO) cross-validation error estimation for online sequential data is proposed based on inversion of block matrix. Second, a new weighted strategy based on the proposed LOO error estimation is proposed. This strategy ranks the samples’ importance by means of the LOO error of each new added sample and then assigns various weights. Performance comparisons of the proposed method with other existing algorithms are presented based on chaotic and real-world nonstationary time series data. The results show that the proposed method outperforms the classical ELM and OS-ELM in terms of generalization performance and numerical stability.

Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


Sign in / Sign up

Export Citation Format

Share Document