scholarly journals Stochastic Phenomena in One-Dimensional Rulkov Model of Neuronal Dynamics

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Irina Bashkirtseva

We study the nonlinear Rulkov map-based neuron model forced by random disturbances. For this model, an overview of the variety of stochastic regimes is given. For the parametric analysis of these regimes, the stochastic sensitivity functions technique is used. In a period-doubling zone, we analyze backward stochastic bifurcations modelling changes of modality of noisy neuron spiking. Noise-induced transitions in a zone of bistability are considered. It is shown how such random transitions can generate a new neuronal regime of the stochastic bursting and transfer the system from order to chaos. A transient zone of values of noise intensity corresponding to the onset of noise-induced bursting and chaotization is localized by the stochastic sensitivity functions technique.

2016 ◽  
Vol 26 (04) ◽  
pp. 1650053 ◽  
Author(s):  
Irina Bashkirtseva ◽  
Ekaterina Ekaterinchuk ◽  
Lev Ryashko

We study the dynamics of stochastically forced 2D logistic-type discrete model. Under random disturbances, stochastic trajectories leaving deterministic attractors can form complex dynamic regimes that have no analogue in the deterministic case. In this paper, we analyze an impact of the random noise on 2D logistic-type model in the bistability zones with coexisting attractors (equilibria, closed invariant curves, discrete cycles). For the constructive probabilistic analysis of the random states distribution around such attractors, a stochastic sensitivity functions technique and method of confidence domains are used. For the considered model, on the base of the suggested approach, a phenomenon of noise-induced transitions between attractors and the generation of chaos are analyzed.


2009 ◽  
Vol 29 (2) ◽  
pp. 381-418 ◽  
Author(s):  
V. V. M. S. CHANDRAMOULI ◽  
M. MARTENS ◽  
W. DE MELO ◽  
C. P. TRESSER

AbstractThe period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend on the choice of the map under rather mild smoothness conditions. The existence of a unique renormalization fixed point that is also hyperbolic among generic smooth-enough maps plays a crucial role in the corresponding renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point were first shown in the holomorphic context, by means that generalize to other renormalization operators. It was then proved that, in the space ofC2+αunimodal maps, forα>0, the period doubling renormalization fixed point is hyperbolic as well. In this paper we study what happens when one approaches from below the minimal smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renormalization generic fixed point. Indeed, our main result states that in the space ofC2unimodal maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough smoothness to geta prioribounds. In this smoother class, calledC2+∣⋅∣, the failure of hyperbolicity is tamer than inC2. Things get much worse with just a bit less smoothness thanC2, as then even the uniqueness is lost and other asymptotic behavior becomes possible. We show that the period doubling renormalization operator acting on the space ofC1+Lipunimodal maps has infinite topological entropy.


2016 ◽  
Vol 26 (07) ◽  
pp. 1630016 ◽  
Author(s):  
Motomasa Komuro ◽  
Kyohei Kamiyama ◽  
Tetsuro Endo ◽  
Kazuyuki Aihara

We classify the local bifurcations of quasi-periodic [Formula: see text]-dimensional tori in maps (abbr. MT[Formula: see text]) and in flows (abbr. FT[Formula: see text]) for [Formula: see text]. It is convenient to classify these bifurcations into normal bifurcations and resonance bifurcations. Normal bifurcations of MT[Formula: see text] can be classified into four classes: namely, saddle-node, period doubling, double covering, and Neimark–Sacker bifurcations. Furthermore, normal bifurcations of FT[Formula: see text] can be classified into three classes: saddle-node, double covering, and Neimark–Sacker bifurcations. These bifurcations are determined by the type of the dominant Lyapunov bundle. Resonance bifurcations are well known as phase locking of quasi-periodic solutions. These bifurcations are classified into two classes for both MT[Formula: see text] and FT[Formula: see text]: namely, saddle-node cycle and heteroclinic cycle bifurcations of the [Formula: see text]-dimensional tori. The former is reversible, while the latter is irreversible. In addition, we propose a method for analyzing higher-dimensional tori, which uses one-dimensional tori in sections (abbr. ST[Formula: see text]) and zero-dimensional tori in sections (abbr. ST[Formula: see text]). The bifurcations of ST[Formula: see text] can be classified into five classes: saddle-node, period doubling, component doubling, double covering, and Neimark–Sacker bifurcations. The bifurcations of ST[Formula: see text] can be classified into four classes: saddle-node, period doubling, component doubling, and Neimark–Sacker bifurcations. Furthermore, we clarify the relationship between the bifurcations of ST[Formula: see text]/ST[Formula: see text] and the bifurcations of MT[Formula: see text]/FT[Formula: see text]. We present examples of all of these bifurcations.


2005 ◽  
Vol 15 (04) ◽  
pp. 1267-1284 ◽  
Author(s):  
V. AVRUTIN ◽  
M. SCHANZ

In this work a one-dimensional piecewise-smooth dynamical system, representing a Poincaré return map for dynamical systems of the Lorenz type, is investigated. The system shows a bifurcation scenario similar to the classical period-doubling one, but which is influenced by so-called border collision phenomena and denoted as border collision period-doubling bifurcation scenario. This scenario is formed by a sequence of pairs of bifurcations, whereby each pair consists of a border collision bifurcation and a pitchfork bifurcation. The mechanism leading to this scenario and its characteristic properties, like symmetry-breaking and symmetry-recovering as well as emergence of coexisting attractors, are investigated.


2002 ◽  
Vol 12 (07) ◽  
pp. 1667-1674 ◽  
Author(s):  
EDSON D. LEONEL ◽  
J. KAMPHORST LEAL DA SILVA ◽  
S. OLIFFSON KAMPHORST

We study the one-dimensional logistic map with control parameter perturbed by a small periodic function. In the pure constant case, scaling arguments are used to obtain the exponents related to the relaxation of the trajectories at the exchange of stability, period-doubling and tangent bifurcations. In particular, we evaluate the exponent z which describes the divergence of the relaxation time τ near a bifurcation by the relation τ ~ | R - Rc |-z. Here, R is the control parameter and Rc is its value at the bifurcation. In the time-dependent case new attractors may appear leading to a different bifurcation diagram. Beside these new attractors, complex attractors also arise and are responsible for transients in many trajectories. We obtain, numerically, the exponents that characterize these transients and the relaxation of the trajectories.


We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.


2010 ◽  
Vol 31 (4) ◽  
pp. 1193-1228 ◽  
Author(s):  
DENIS GAIDASHEV ◽  
HANS KOCH

AbstractIt has been observed that the famous Feigenbaum–Coullet–Tresser period-doubling universality has a counterpart for area-preserving maps of ℝ2. A renormalization approach has been used in a computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmannet al[Existence of a fixed point of the doubling transformation for area-preserving maps of the plane.Phys. Rev. A 26(1) (1982), 720–722; A computer-assisted proof of universality for area-preserving maps.Mem. Amer. Math. Soc. 47(1984), 1–121]. As is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period-doubling universality exists to date. We argue that the period-doubling renormalization fixed point for area-preserving maps is almost one dimensional, in the sense that it is close to the following Hénon-like (after a coordinate change) map:where ϕ solvesWe then give a ‘proof’ of existence of solutions of small analytic perturbations of this one-dimensional problem, and describe some of the properties of this solution. The ‘proof’ consists of an analytic argument for factorized inverse branches of ϕ together with verification of several inequalities and inclusions of subsets of ℂ numerically. Finally, we suggest an analytic approach to the full period-doubling problem for area-preserving maps based on its proximity to the one-dimensional case. In this respect, the paper is an exploration of possible analytic machinery for a non-trivial renormalization problem in a conservative two-dimensional system.


1993 ◽  
Vol 03 (06) ◽  
pp. 1557-1572 ◽  
Author(s):  
Yu. L. MAISTRENKO ◽  
V. L. MAISTRENKO ◽  
L. O. CHUA

We study the bifurcations of attractors of a one-dimensional 2-segment piecewise-linear map. We prove that the parameter regions of existence of stable point cycles γ are separated by regions of existence of stable interval cycles Γ containing chaotic everywhere dense trajectories. Moreover, we show that the period-doubling phenomenon for cycles of chaotic intervals is characterized by two universal constants δ and α, whose values are calculated from explicit formulas.


Sign in / Sign up

Export Citation Format

Share Document