Inverse period-doubling bifurcations determine complex structure of bursting in a one-dimensional non-autonomous map

2016 ◽  
Vol 26 (2) ◽  
pp. 023117 ◽  
Author(s):  
Xiujing Han ◽  
Zhenyang Chen ◽  
Qinsheng Bi
1994 ◽  
Vol 116 (2) ◽  
pp. 359-374 ◽  
Author(s):  
Jean-Marc Gambaudo ◽  
John Guaschi ◽  
Toby Hall

It is a well-known result in one-dimensional dynamics that if a continuous map of the interval has positive topological entropy, then it has a periodic orbit of period 2i for each integer i ≥ 0 [15] (see also [12]). In fact, one can say rather more: such a map has a sequence of periodic orbits (P)i ≥ 0 with per (Pi) = 2i which form a period-doubling cascade (that is, whose points are ordered and permuted in the way which would occur had the orbits been created in a sequence of period-doubling bifurcations starting from a single fixed point). This result reflects the central role played by period-doubling in transitions to positive entropy in a one-dimensional setting. In this paper we prove an analogous result for positive-entropy orientation-preserving diffeomorphisms of the disc. Using the notion [9] of a two-dimensional cascade, we shall show that such diffeomorphisms always have infinitely many ‘zero-entropy’ cascades of periodic orbits (including a period-doubling cascade, though this need not begin from a fixed point).


2021 ◽  
Vol 17 (2) ◽  
pp. 165-174
Author(s):  
E. Kuryzhov ◽  
◽  
E. Karatetskaia ◽  
D. Mints ◽  
◽  
...  

We consider the system of two coupled one-dimensional parabola maps. It is well known that the parabola map is the simplest map that can exhibit chaotic dynamics, chaos in this map appears through an infinite cascade of period-doubling bifurcations. For two coupled parabola maps we focus on studying attractors of two types: those which resemble the well-known discrete Lorenz-like attractors and those which are similar to the discrete Shilnikov attractors. We describe and illustrate the scenarios of occurrence of chaotic attractors of both types.


2010 ◽  
Vol 6 (S271) ◽  
pp. 288-296
Author(s):  
Laurène Jouve ◽  
Michael R. E. Proctor ◽  
Geoffroy Lesur

AbstractWe present the effects of introducing results of 3D MHD simulations of buoyant magnetic fields in the solar convection zone in 2D mean-field Babcock-Leighton models. In particular, we take into account the time delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. We find that the delays produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. The study of a reduced model reveals that aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. We also discuss the memory of such systems and the conclusions which may be drawn concerning the actual solar cycle variability.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150147
Author(s):  
Yo Horikawa

The bifurcations and chaos in a system of two coupled sigmoidal neurons with periodic input are revisited. The system has no self-coupling and no inherent limit cycles in contrast to the previous studies and shows simple bifurcations qualitatively different from the previous results. A symmetric periodic solution generated by the periodic input underdoes a pitchfork bifurcation so that a pair of asymmetric periodic solutions is generated. A chaotic attractor is generated through a cascade of period-doubling bifurcations of the asymmetric periodic solutions. However, a symmetric periodic solution repeats saddle-node bifurcations many times and the bifurcations of periodic solutions become complicated as the output gain of neurons is increasing. Then, the analysis of border collision bifurcations is carried out by using a piecewise constant output function of neurons and a rectangular wave as periodic input. The saddle-node, the pitchfork and the period-doubling bifurcations in the coupled sigmoidal neurons are replaced by various kinds of border collision bifurcations in the coupled piecewise constant neurons. Qualitatively the same structure of the bifurcations of periodic solutions in the coupled sigmoidal neurons is derived analytically. Further, it is shown that another period-doubling route to chaos exists when the output function of neurons is asymmetric.


Author(s):  
Zhixiang Xu ◽  
Hideyuki Tamura

Abstract In this paper, a single-degree-of-freedom magnetic levitation dynamic system, whose spring is composed of a magnetic repulsive force, is numerically analyzed. The numerical results indicate that a body levitated by magnetic force shows many kinds of vibrations upon adjusting the system parameters (viz., damping, excitation amplitude and excitation frequency) when the system is excited by the harmonically moving base. For a suitable combination of parameters, an aperiodic vibration occurs after a sequence of period-doubling bifurcations. Typical aperiodic vibrations that occurred after period-doubling bifurcations from several initial states are identified as chaotic vibration and classified into two groups by examining their power spectra, Poincare maps, fractal dimension analyses, etc.


2018 ◽  
Vol 224 ◽  
pp. 02055
Author(s):  
Yuriy A. Gol’tsov ◽  
Alexander S. Kizhuk ◽  
Vasiliy G. Rubanov

The dynamic modes and bifurcations in a pulse control system of a heating unit, the condition of which is described through differential equations with discontinuous right–hand sides, have been studied. It has been shown that the system under research can demonstrate a great variety of nonlinear phenomena and bifurcation transitions, such as quasiperiodicity, multistable behaviour, chaotization of oscillations through a classical period–doubling bifurcations cascade and border–collision bifurcation.


2009 ◽  
Vol 29 (2) ◽  
pp. 381-418 ◽  
Author(s):  
V. V. M. S. CHANDRAMOULI ◽  
M. MARTENS ◽  
W. DE MELO ◽  
C. P. TRESSER

AbstractThe period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend on the choice of the map under rather mild smoothness conditions. The existence of a unique renormalization fixed point that is also hyperbolic among generic smooth-enough maps plays a crucial role in the corresponding renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point were first shown in the holomorphic context, by means that generalize to other renormalization operators. It was then proved that, in the space ofC2+αunimodal maps, forα>0, the period doubling renormalization fixed point is hyperbolic as well. In this paper we study what happens when one approaches from below the minimal smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renormalization generic fixed point. Indeed, our main result states that in the space ofC2unimodal maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough smoothness to geta prioribounds. In this smoother class, calledC2+∣⋅∣, the failure of hyperbolicity is tamer than inC2. Things get much worse with just a bit less smoothness thanC2, as then even the uniqueness is lost and other asymptotic behavior becomes possible. We show that the period doubling renormalization operator acting on the space ofC1+Lipunimodal maps has infinite topological entropy.


Sign in / Sign up

Export Citation Format

Share Document