Robust Proactive Project Scheduling Model for the Stochastic Discrete Time/Cost Trade-Off Problem
We study the project budget version of the stochastic discrete time/cost trade-off problem (SDTCTP-B) from the viewpoint of the robustness in the scheduling. Given the project budget and a set of activity execution modes, each with uncertain activity time and cost, the objective of the SDTCTP-B is to minimize the expected project makespan by determining each activity’s mode and starting time. By modeling the activity time and cost using interval numbers, we propose a proactive project scheduling model for the SDTCTP-B based on robust optimization theory. Our model can generate robust baseline schedules that enable a freely adjustable level of robustness. We convert our model into its robust counterpart using a form of the mixed-integer programming model. Extensive experiments are performed on a large number of randomly generated networks to validate our model. Moreover, simulation is used to investigate the trade-off between the advantages and the disadvantages of our robust proactive project scheduling model.