scholarly journals Coordinated Stability Control of Wind-Thermal Hybrid AC/DC Power System

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zhiqing Yao ◽  
Zhenghang Hao ◽  
Zhuo Chen ◽  
Zhiguo Yan

The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature. Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital Simulator (RTDS), including wind power system and synchronous generator system and DC power transmission system. The experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

2014 ◽  
Vol 960-961 ◽  
pp. 1029-1033
Author(s):  
Yong Chun Su ◽  
Kai Xuan Chang

In order to face the challenge of our economy and the environment, it is needed to speed up the energy structure transition and UItra High voltage (UHV) transmission has become an inevitable choice. Researches on the influence of UHV project to Jiangxi power grid are carried out in this paper. Using advanced digital power system simulator (ADPSS), the real-time simulation model of Jiangxi power grid is build up including the UHV project. Based on the simulation model, the problem of low frequency oscillation in Jiangxi power system is studied after the UHV power transmission project accessed. The influence of the UHV transmission line faults on system stability of Jiangxi grid is also researched.


2015 ◽  
Vol 781 ◽  
pp. 397-401
Author(s):  
Nur Safura Ab Khalid ◽  
Mohd Wazir Mustafa ◽  
Rasyidah Mohamed Idris

This paper presents a new approach for designing the Power System Stabilizer. As in power system network, low frequency oscillation always occurs for a long period of time that will decrease the power transfer capability. Power System Stabilizer known as PSS is being installed as one of the control devices in a generating unit. The conventional PSS (CPSS) is the most commonly used in power system, which uses lead-lag compensation. The lack in CPSS has drawn an interest of designing the new approach of PSS to outperform the conventional one. Thus, Bees Algorithm (BA) which is known as one of the numerous intelligent optimization methods is proposed in this paper. It is appears to aid the system stability by optimizing the PSS parameters tuning. The PSS with the BA approach is labelled as BA-PSS and being tested on single machine infinite bus system (SMIB) in Matlab/Simulink environment. BA-PSS performance is compared with CPSS as to validate the ability of the proposed method to achieve great performance in power system stability enhancement. Different type of mechanical input is being injected into the system and the result shows that BA-PSS is capable to optimize the parameters tuning of PSS. BA-PSS also improved the unstable or poorly stable modes as the system achieve the stability with lower overshoot and less time settling. The superior response of BA-PSS controller proved the ability of BA approach in which is capable to solve the lack in CPSS with better performance in enhancing the system stability.


2012 ◽  
Vol 241-244 ◽  
pp. 676-681 ◽  
Author(s):  
Qiu Li Wu ◽  
Xi Cheng ◽  
Jian Cheng Tan

In interconnected systems, the low frequency oscillation becomes an important factor that affects the power system stability and limits power transport. This paper analyses the principle of low frequency oscillation in power system and the measures on suppressed low frequency oscillation, at last discusses the future development.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-ling Su ◽  
Lai-jun Chen ◽  
Jun Yang ◽  
Zhengxi Li ◽  
Peng Zhou ◽  
...  

Power systems have developed significantly because of the increasing share of renewable energy sources (RESs). Despite the advantages, they also bring inevitable challenges to power system stability, especially under extreme fault conditions. This paper presents a practical active support control strategy for RESs to support the power grid under extreme fault conditions. The proof process is taken in an AC-DC hybrid power grid integrated with large capacity of PV stations and wind farms. The on-site engineering test results reflect that RESs bring potential risks in the AC-DC hybrid power grid operation and validate the excellent engineering practical features of the proposed control strategy. In addition, test results also reveal predisposing factors of power system instability which are missing in the simulation and fault simulation device-based testing results. They prove the outstanding advantages of on-site engineering tests.


2015 ◽  
Vol 781 ◽  
pp. 374-378
Author(s):  
Nurul Aziah Arzeha ◽  
Mohd Wazir Mustafa ◽  
Rasyidah Mohamed Idris

Power system is often vulnerable to low frequency electromechanical oscillations due to the interconnected configuration. A common lead-lag controller is used for one of the FACTS devices known as Thyristor Controlled Series Compensator (TCSC) as supplementary controller for damping purpose in order to improve transient stability and power oscillation damping of the system. As Bees Algorithm (BA) optimized the parameters of the TCSC lead-lag controller, thus its named is TCSC-BALL. In this study, the optimization problem is formulated as a constrained optimization with the main objective is to move the system eigenvalues to the left as far as possible in order to improve the system stability. Then, the system is simulated in MATLAB by using The Phillips-Heffron model for single machine infinite bus (SMIB) with responses of increases in mechanical power at t=1 second. The performance is observed in terms of electromechanical eigenvalues position on s-plane and damping responses of low-frequency oscillations where the system implemented with the TCSC-BALL controller given better results as compared to the system without and with the inclusion of conventional Power System Stabilizer (CPSS).


Sign in / Sign up

Export Citation Format

Share Document