scholarly journals Motion Control Design for an Omnidirectional Mobile Robot Subject to Velocity Constraints

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ollin Peñaloza-Mejía ◽  
Luis A. Márquez-Martínez ◽  
Joaquín Alvarez ◽  
Miguel G. Villarreal-Cervantes ◽  
Ramón García-Hernández

A solution to achieve global asymptotic tracking with bounded velocities in an omnidirectional mobile robot is proposed in this paper. It is motivated by the need of having a useful in-practice motion control scheme, which takes into account the physical limits of the velocities. To this end, a passive nonlinear controller is designed and combined with a tracking controller in a negative feedback connection structure. By using Lyapunov theory and passivity tools, global asymptotic tracking with desired bounded velocities is proved. Simulations and experimental results are provided to show the effectiveness of the proposal.

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Mahmood Reza Azizi ◽  
Alireza Rastegarpanah ◽  
Rustam Stolkin

Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles.


SIMULATION ◽  
2019 ◽  
Vol 96 (2) ◽  
pp. 169-183
Author(s):  
Saumya R Sahoo ◽  
Shital S Chiddarwar

Omnidirectional robots offer better maneuverability and a greater degree of freedom over conventional wheel mobile robots. However, the design of their control system remains a challenge. In this study, a real-time simulation system is used to design and develop a hardware-in-the-loop (HIL) simulation platform for an omnidirectional mobile robot using bond graphs and a flatness-based controller. The control input from the simulation model is transferred to the robot hardware through an Arduino microcontroller input board. For feedback to the simulation model, a Kinect-based vision system is used. The developed controller, the Kinect-based vision system, and the HIL configuration are validated in the HIL simulation-based environment. The results confirm that the proposed HIL system can be an efficient tool for verifying the performance of the hardware and simulation designs of flatness-based control systems for omnidirectional mobile robots.


Author(s):  
Ho-Hoon Lee

In this paper, a path-generating motion control scheme is proposed for a unicycle-type wheeled mobile robot navigating through multiple obstacles. The proposed motion control scheme computes the driving force and rotational torque of the robot in real time that drive the robot to a given goal position while avoiding multiple obstacles. The nonholonomic constraints as well as the dynamic equations of the mobile robot are used in the design of the motion control scheme, where a repulsive potential function is used for obstacle avoidance. In the control design, the Lyapunov stability theorem is used as a mathematical design tool. Under certain conditions, the proposed control guarantees asymptotic stability while keeping all internal signals bounded. The effectiveness of the proposed control method has been shown with realistic computer simulations.


2020 ◽  
Author(s):  
Luís Felipe Vieira Silva ◽  
Thiago Damasceno Cordeiro ◽  
Ícaro Bezerra Queiroz de Araújo ◽  
Heitor Judiss Savino

This works presents a H2/H∞ robust control scheme for a rotary inverted pendulum using Linear Matrix Inequality (LMI) approach based on Lyapunov theory and taking into account the uncertainty of the position of the pendulum to the servo-basis of the system. The dynamic model of the system is obtained by Euler-Lagrange formulation and the controller is obtained by solving a convex optimization problem. Experiments using this control scheme with changes in the position of the pendulum were made to compare the performance with another controller using pole placement control design. Results show that only H2/H∞ controller is able to maintain the stability of the system for all experiments performed in this work.


Sign in / Sign up

Export Citation Format

Share Document