teleoperation system
Recently Published Documents


TOTAL DOCUMENTS

611
(FIVE YEARS 123)

H-INDEX

24
(FIVE YEARS 6)

Author(s):  
Bilal Gormus ◽  
Hakan Yazici ◽  
İbrahim Beklan Küçükdemiral

A robust state-feedback [Formula: see text] controller is proposed for an uncertain bilateral teleoperation system having norm-bounded parametric uncertainties on mass and damping coefficients of the considered master/slave system. The proposed method ensures robust stability and successful reference tracking and force reflection performance. While Lyapunov stability is used to ensures asymptotic stability, the [Formula: see text] norm from exogenous input to the controlled output is utilized in satisfying the reference tracking and force reflection. As two performance objectives and robust stability requirement are conflicting with each other, the proposed controller reduces the associated conservatism with dilated linear matrix inequalities. Standard and dilated linear matrix inequality-based robust [Formula: see text] state-feedback controllers are performed with a one degree of freedom uncertain master/slave system under reference signal and environmental-induced exogenous force. Numerical simulation results show that the dilated linear matrix inequality-based [Formula: see text] control satisfies lower [Formula: see text] norm than a standard [Formula: see text] control. Moreover, the proposed controller demonstrates a very successful performance in achieving performance objectives despite the stringent norm-bounded parameter uncertainties.


2021 ◽  
Vol 71 ◽  
pp. 102167
Author(s):  
Yong Pan ◽  
Chengjun Chen ◽  
Dongnian Li ◽  
Zhengxu Zhao ◽  
Jun Hong

Author(s):  
Angelica Nakayama ◽  
Daniel Ruelas ◽  
Jesus Savage ◽  
Ernesto Bribiesca

Teleoperated service robots can perform more complex and precise tasks as they combine robot skills and human expertise. Communication between the operator and the robot is essential for remote operation and strongly affects system efficiency. Immersive interfaces are being used to enhance teleoperation experience. However, latency or time delay can impair the performance of the robot operation. Since remote visualization involves transmitting a large amount of video data, the challenge is to decrease communication instability. Then, an efficient teleoperation system must have a suitable operation interface capable of visualizing the remote environment, controlling the robot, and having a fast response time. This work presents the development of a service robot teleoperation system with an immersive mixed reality operation interface where the operator can visualize the real remote environment or a virtual 3D environment representing it. The virtual environment aims to reduce the latency on communication by reducing the amount of information sent over the network and improve user experience. The robot can perform navigation and simple tasks autonomously or change to the teleoperated mode for more complex tasks. The system was developed using ROS, UNITY 3D, and sockets to be exported with ease to different platforms. The experiments suggest that having an immersive operation interface provides improved usability for the operator. The latency appears to improve when using the virtual environment. The user experience seems to benefit from the use of mixed reality techniques; this may lead to the broader use of teleoperated service robot systems.


Robotica ◽  
2021 ◽  
pp. 1-21
Author(s):  
Linping Chan ◽  
Qingqing Huang ◽  
Ping Wang

Abstract This article presents an innovative adaptive-observer-based scaled four-channel (4-CH) control approach applying damping injection for nonlinear teleoperation systems, which unify the study of robotic dynamic uncertainties, operator/environment force acquirements and asymmetric time-varying delays in the same framework. First, a scaled 4-CH scheme with damping injection is developed to handle time-varying delay while guaranteeing the passivity of communication channels. Then, the improved extended active observer (IEAOB) is deployed to derive the operator/environment force while addressing the issues of measurement noise and model uncertainties. Furthermore, the system stability is analyzed by choosing Lyapunov functional. Finally, the proposed method is validated through simulation.


Author(s):  
Mutaz M. Hamdan ◽  
Magdi S. Mahmoud

<p>The teleoperation system is often composed of a human operator, a local master manipulator, and a remote slave manipulator that are connected by a communication network. This paper proposes a survey on feedback control design for the bilateral teleoperation systems (BTSs) in nominal situations and in the presence of cyber-attacks. The main idea of the presented methods is to achieve the stability of a delayed bilateral teleoperation system in the presence of several kinds of cyber attacks. In this paper, a comprehensive survey on control systems for BTSs under cyber-attacks is discussed. Finally, we discuss the current and future problems in this field.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jouh Yeong Chew ◽  
Mitsuru Kawamoto ◽  
Takashi Okuma ◽  
Eiichi Yoshida ◽  
Norihiko Kato

AbstractThis study proposes a Human Machine Interface (HMI) system with adaptive visual stimuli to facilitate teleoperation of industrial vehicles such as forklifts. The proposed system estimates the context/work state during teleoperation and presents the optimal visual stimuli on the display of HMI. Such adaptability is supported by behavioral models which are developed from behavioral data of conventional/manned forklift operation. The proposed system consists of two models, i.e., gaze attention and work state transition models which are defined by gaze fixations and operation pattern of operators, respectively. In short, the proposed system estimates and shows the optimal visual stimuli on the display of HMI based on temporal operation pattern. The usability of teleoperation system is evaluated by comparing the perceived workload elicited by different types of HMI. The results suggest the adaptive attention-based HMI system outperforms the non-adaptive HMI, where the perceived workload is consistently lower as responded by different categories of forklift operators.


Sign in / Sign up

Export Citation Format

Share Document