scholarly journals Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Subramanian Arumugom ◽  
Marimuthu Rajaram

Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies.

2021 ◽  
Vol 23 (07) ◽  
pp. 550-557
Author(s):  
Bharti Thakur ◽  
◽  
Dr. Archana Rani ◽  

In today’s scenario, the power quality issues like voltage sag and swell are major concerns in power systems. On the distribution, side to overcome this issue a custom power device DVR(Dynamic Voltage Restorer) is proven to be a more effective solution that is lower in cost, smaller in size, and offers a faster dynamic response for the protection of sensitive load. DVR is a series compensating device which operates as a voltage booster. The application of DVR is entitled to be a flawless compensating device for the compensation of voltage sag and swell. This paper presents the modeling and simulation using various controller topologies like PI controller based on synchronous reference frame algorithm, fuzzy controller, and interval type 2 fuzzy controller. The results are then verified using a Matlab-Simulink environment.


Author(s):  
A Antony Charles ◽  
D Joshua Jeyasekar ◽  
G Ramya ◽  
P Suresh ◽  
B Manimaran

Sign in / Sign up

Export Citation Format

Share Document