scholarly journals A Bioinspired Methodology Based on an Artificial Immune System for Damage Detection in Structural Health Monitoring

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Maribel Anaya ◽  
Diego A. Tibaduiza ◽  
Francesc Pozo

Among all the aspects that are linked to a structural health monitoring (SHM) system, algorithms, strategies, or methods for damage detection are currently playing an important role in improving the operational reliability of critical structures in several industrial sectors. This paper introduces a bioinspired strategy for the detection of structural changes using an artificial immune system (AIS) and a statistical data-driven modeling approach by means of a distributed piezoelectric active sensor network at different actuation phases. Damage detection and classification of structural changes using ultrasonic signals are traditionally performed using methods based on the time of flight. The approach followed in this paper is a data-based approach based on AIS, where sensor data fusion, feature extraction, and pattern recognition are evaluated. One of the key advantages of the proposed methodology is that the need to develop and validate a mathematical model is eliminated. The proposed methodology is applied, tested, and validated with data collected from two sections of an aircraft skin panel. The results show that the presented methodology is able to accurately detect damage.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jiachen Zhang ◽  
Zhikun Hou

A large number of methods have been proposed in the area of structural health monitoring (SHM). However, many of them rely on the prior knowledge of structural-parameter-values or the assumption that the structural-parameter-values do not change without damage. This dependence on specific parameter values limits these methods’ applicability. This paper proposes an artificial immune system- (AIS-) based approach for the civil structural health monitoring, which does not require specific parameter values to work. A linear three-floor structure model and a number of single-damage scenarios were used to evaluate the proposed method’s performance. The high success rate showed this approach’s great potential for the SHM tasks. This approach has merits of less dependence on the structural-parameter-values and low demand on the training conditions.


2020 ◽  
Vol 6 (4) ◽  
pp. 16948-16963
Author(s):  
Daniela Cabral Oliveira ◽  
Fábio Roberto Chavarette ◽  
Fernando Parra dos Anjos Lima

2011 ◽  
Vol 368-373 ◽  
pp. 2402-2405
Author(s):  
Nai Zhi Zhao ◽  
Chang Tie Huang ◽  
Xin Chen

Many of the wave propagation based structural health monitoring techniques rely on some knowledge of the structure in a healthy state in order to identify damage. Baseline measurements are recorded when a structure is pristine and are stored for comparison to future data. A concern with the use of baseline subtraction methods is the ability to discern structural changes from the effects of varying environmental and operational conditions when analyzing the vibration response of a system. The use of a standard baseline subtraction technique may falsely indicate damage when environmental or operational variations are present between baseline measurements and new measurements. A procedure was outlined for the method, including excitation and recording of Lamb waves, and the use of damage detection algorithms. In this paper, several tests are performed and the results are used to help develop the damage detection algorithms previously described, and to evaluate the performance of the instantaneous baseline SHM technique. Analytical testing is first performed by feeding known input signals into each damage detection algorithm and analyzing the output data. The results of the analytical testing are used to help develop the damage detection algorithms.


2012 ◽  
Vol 518 ◽  
pp. 289-297 ◽  
Author(s):  
Krzysztof Mendrok ◽  
Tadeusz Uhl ◽  
Wojciech Maj ◽  
Paweł Paćko

The modal filter has various applications, among the others for damage detection. It was shown, that a structural modification (e.g. drop of stiffness due to a crack) causes an appearance of peaks on the output of the modal filter. This peaks result from not perfect modal filtration due to system local structural changes. That makes it a great indicator for damage detection, which has fallowing advantages: low computational afford due to the data reduction, the structural health monitoring system based on it, is easy to automate. Furthermore the system is theoretically insensitive to environmental changes as temperature or humidity variation (global structural changes do not cause a drop of modal filtration accuracy). In the paper the practical implementation of the presented technique is shown. The developed structural health monitoring (SHM) system is described as well as results of its extensive simulation and laboratory testing. Finally the application of the system for the structural changes detection on the airplane parts is presented..


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


2017 ◽  
Vol 17 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Jochen Moll ◽  
Philip Arnold ◽  
Moritz Mälzer ◽  
Viktor Krozer ◽  
Dimitry Pozdniakov ◽  
...  

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.


Sign in / Sign up

Export Citation Format

Share Document