scholarly journals Cd2+Exchange for Na+and K+in the Interlayer of Montmorillonite: Experiment and Molecular Simulation

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lefu Mei ◽  
Huashang Tao ◽  
Chao He ◽  
Xuebing Xin ◽  
Libing Liao ◽  
...  

Montmorillonite (Mt) has high cation exchange capacity and thus has been studied extensively for its cation exchange interactions with other cations. However, molecular simulations for the forces governing the cation exchange on Mt surfaces or in the interlayer spaces were limited. In this study, Mt with K+and Na+in the interlayer spaces was tested for its cation exchange with Cd2+in solution and the forces driving the cation exchange reaction were simulated by molecular simulations. The experimental results showed that Na+in Na + Mt was completely exchanged by Cd2+, while only 50% of K+in K + Mt was exchanged by Cd2+. A largerd-value was noticed for Na + Mt in comparison to K + Mt, suggesting that the interlayer space is more hydrated with Na+as the interlayer space cation. Molecular dynamic simulations revealed a larger energy decrease when Cd2+substitutes K+. However, the nice fit of the K+into the 12-coordinated interlayer space sites may restrict its hydration and thus reduce its interlayer space cation exchange capability by Cd2+.

Clay Minerals ◽  
1966 ◽  
Vol 6 (4) ◽  
pp. 341-344 ◽  
Author(s):  
W. E. Worrall ◽  
A. E. Cooper

AbstractA white-burning, highly-plastic clay from Jamaica, containing mainly disordered kaolinite, was examined recently. It was unusual in that it was practically free from fine mica, and therefore could be purified readily by standard sedimentation techniques.The cation exchange capacity was abnormally high, and the purified clay mineral, on analysis and calculation of the ionic composition, was found to be deficient in aluminium, but contained magnesium and iron.The results confirmed the view, previously expressed, that disorder in kaolinites is associated with a high cation exchange capacity and a substituted lattice.


2019 ◽  
Vol 7 (19) ◽  
pp. 16410-16418 ◽  
Author(s):  
Gyanendra Kharel ◽  
Oumar Sacko ◽  
Xu Feng ◽  
John R. Morris ◽  
Claire L. Phillips ◽  
...  

Clay Minerals ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 441-448 ◽  
Author(s):  
S. Kaufhold ◽  
R. Dohrmann

AbstractExtensive drying of smectites can cause the interlayer space to break down (collapse). This can affect the properties of bentonites as geotechnical barriers of HLRW (highly radioactive waste) repositories. If and to what extent the collapse occurs depends strongly on the type of interlayer cation. In particular K is known to lead to ready dehydration, in contrast to Ca and Mg. In the present study, various bentonites and one illite/smectite clay were dried/heated at 90ºC for 1.5 a and in a different experiment at 120ºC for 4.5 a and investigated with respect to mineralogical and geochemical changes of the smectite.Smectite alteration after extensive drying was restricted to changes of the exchangeable cations. The CEC decreased by 9% (90ºC test) and 14% (120ºC test). A slight decrease of exchangeable Na+ was observed following the 90ºC test. No significant further decrease was observed after the 120ºC test. In contrast, the larger cation exchange capacity (CEC) decrease after the 120ºC test could be explained by increased Ca/Mg fixation. A possible mechanism for the observations is presented.


Fuel ◽  
2007 ◽  
Vol 86 (12-13) ◽  
pp. 1811-1821 ◽  
Author(s):  
Roberto Juan ◽  
Susana Hernández ◽  
José Manuel Andrés ◽  
Carmen Ruiz

2013 ◽  
Vol 12 (3) ◽  
pp. 248-255

A High Cation Exchange Capacity (HCM) montmorillonite clay has been prepared by acetate treatment of Zenith clay. The HCM has been evaluated for metal-uptake from aqueous solutions. The present data show that the cation exchange sites can play a significant role in the adsorption of metals in smectite clays. A theoretical analysis scheme has been developed which shows that permanent-charge sites can become dominant in metal-uptake by clays. In addition, it was shown that the permanent charge can influence the ionic-strength sensitivity of the Point of Zero Charge of the clay.


2021 ◽  
Vol 11 (23) ◽  
pp. 11231
Author(s):  
Takaaki Wajima

Paper sludge ash (PSA) typically has a low Si abundance and significant Ca content because of the presence of calcite fillers, which interfere with the zeolitic conversion of PSA. Ca-masking with ethylenediaminetetraacetic acid (EDTA) was used to reduce Ca interference during zeolite synthesis so that a zeolitic product with a high cation exchange capacity (CEC) could be synthesized. Hydroxysodalite, zeolite-P, hydroxycancrinite, tobermorite, and zeolite-A can be synthesized from PSA by an alkali reaction with EDTA. With the addition of EDTA, calcium ions in the solution were trapped by chelation, and the number of zeolitic crystals with low Si/Al (Si/Al = 1), zeolite-A, increased owing to the promotion of the synthesis reaction. A product with a high CEC that has a high zeolite-A content was obtained. The chelating agent can inhibit Ca interference for zeolite synthesis by Ca-masking, and a product with a high zeolite-A content can be obtained from PSA using EDTA.


Sign in / Sign up

Export Citation Format

Share Document