zeolite synthesis
Recently Published Documents





2022 ◽  
Vol 23 ◽  
pp. 100658
X. Li ◽  
T.-H. Li ◽  
W. Zhou ◽  
Y.-P. Li ◽  
P.H.-L. Sit ◽  

2021 ◽  
Vol 11 (23) ◽  
pp. 11231
Takaaki Wajima

Paper sludge ash (PSA) typically has a low Si abundance and significant Ca content because of the presence of calcite fillers, which interfere with the zeolitic conversion of PSA. Ca-masking with ethylenediaminetetraacetic acid (EDTA) was used to reduce Ca interference during zeolite synthesis so that a zeolitic product with a high cation exchange capacity (CEC) could be synthesized. Hydroxysodalite, zeolite-P, hydroxycancrinite, tobermorite, and zeolite-A can be synthesized from PSA by an alkali reaction with EDTA. With the addition of EDTA, calcium ions in the solution were trapped by chelation, and the number of zeolitic crystals with low Si/Al (Si/Al = 1), zeolite-A, increased owing to the promotion of the synthesis reaction. A product with a high CEC that has a high zeolite-A content was obtained. The chelating agent can inhibit Ca interference for zeolite synthesis by Ca-masking, and a product with a high zeolite-A content can be obtained from PSA using EDTA.

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1255
Virendra Kumar Yadav ◽  
Nisha Choudhary ◽  
Vineet Tirth ◽  
Haresh Kalasariya ◽  
Govindhan Gnanamoorthy ◽  

The traditional hydrothermal synthesis methods are mainly performed under batch operation, which generally takes few days to weeks to yield a zeolite with the desired properties and structure. The zeolites are the backbone of the petrochemical and wastewater industries due to their importance. The commercial methods for zeolite synthesis are expensive, laborious and energy intensive. Among waste products, incense sticks ash is a compound of aluminosilicates and could act as a potential candidate for the synthesis of zeolites for daily needs in these industries. Incense sticks ash is the byproduct of religious places and houses and is rich in Ca, Mg, Al and Si. As a result, incense sticks ash can be proven to be a potential candidate for the formation of calcium-rich zeolites. The formation of zeolites from incense sticks ash is an economical, reliable and eco-friendly method. The application of incense sticks ash for zeolite synthesis can also minimize the problem related to its disposal in the water bodies, which will also minimize the solid waste in countries where it is considered sacred and generated in tons every day.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1413
Rafał Panek ◽  
Jarosław Madej ◽  
Lidia Bandura ◽  
Grzegorz Słowik

Nowadays, using fly ash for zeolites production has become a well-known strategy aimed on sustainable development. During zeolite synthesis in a hydrothermal conversion large amount of post-reaction solution is generated. In this work, the solution was used as a substrate for Na-A and Na-X zeolites synthesis at laboratory and technical scale. Obtained materials were characterized using particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherm. Produced zeolites revealed high purity (>98%) and monomineral zeolitic phase composition. The SiO2 content was in the range 39–42% and 40–38%, whereas Al2O3 content was 23–22% and 25–26% for Na-X and Na-A, respectively. TEM and BET analyses revealed Na-X zeolite pores were almost identical to commercial 13X with SBET in the range 671–734 m2/g. FTIR indicated slight differences between materials obtained at laboratory and technical scale in Si-O-(Si/Al) bridges of the zeolitic skeleton. The results showed good replicability of the laboratory process in the larger scale. The proposed method allows for waste solution reusability with a view to highly pure zeolites production in line with circular economy assumptions.

Stacey I. Zones ◽  
K. Jayanthi ◽  
Jesus Pascual ◽  
Dan Xie ◽  
Alexandra Navrotsky

2021 ◽  
Vol 2 (1) ◽  
pp. 53-59
A. Korpa ◽  
V. Teneqja ◽  
S. Gjyli ◽  
A. Andoni

This paper summarizes the investigation results on the main parameters affecting the synthesis of type X and A zeolites using coal silicious fly ash (FA) as raw material. The synthesis was performed by dissolution of alkali-fused alumino-silicates, followed by hydrothermal treatment. The experimental data confirm that fly ash SiO2/Al2O3 ratio, NaOH/FA ratio, acid treatment of pre-fused fly ash, salinity of solution have a significant effect on type and properties of newly formed zeolites. In summary, the results show that A and X-type zeolite form with FA SiO2/Al2O3 ratio < 1.12 and > 1.86, respectively. Moreover, FA characterized by SiO2/Al2O3 mole ratio of 3.15 is suitable for X-type zeolite synthesis while A-type zeolite does not form without NaAlO2 addition. The crystallization occurs faster at higher temperatures although above 90°C X-type zeolite evolves into more stable phases whereas increasing the crystallization time from 1 to 72 hours, the yield of the synthetic products enhances from 60 to 75%. The use of seawater is responsible for the synthesis of X-type showing both lower purity and specific surface area. However, the synthetic products are characterized by high exchange capacity (> 320 meq/100 g), thus suggesting their successful application as adsorbents and catalysts in different types of wastewater and industrial waste treatments.

Sign in / Sign up

Export Citation Format

Share Document