scholarly journals Premature Destruction of Microbubbles during Voiding Urosonography in Children and Possible Underlying Mechanisms: Post Hoc Analysis from the Prospective Study

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Maciej Piskunowicz ◽  
Dominik Swieton ◽  
Dorota Rybczynska ◽  
Arkadiusz Szarmach ◽  
Edyta Szurowska ◽  
...  

The aim of this study is to describe premature microbubbles destruction with contrast-enhanced voiding urosonography (ce-VUS) in children using 2nd-generation ultrasound contrast agents (UCA) and to hypothesize about the reason. 141 children (61 females and 80 males) were included in the study, with mean age of 3.3 years (range 4 weeks–16.0 years), who underwent ce-VUS examination between 2011 and 2014. Premature destruction of the microbubbles in the urinary bladder during ce-VUS was observed in 11 children (7.8%). In all these cases the voiding phase of ce-VUS examination could not be performed because of destroyed UCA microbubbles. This was noted in anxious, crying infants and children with restricted voiding. The premature destruction of ultrasound contrast agent during ce-VUS is an underreported, important limitation of ce-VUS, which prevents evaluation of the voiding phase and the establishment of vesicoureteric reflux (VUR). This was particularly noted in crying infants and children.

2017 ◽  
Vol 5 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Dafina Kuzmanovska ◽  
Aleksandar Risteski ◽  
Margarita Kambovska ◽  
Tase Trpcevski ◽  
Emilija Sahpazova ◽  
...  

BACKGROUND: Vesicoureteric reflux (VUR) is an important association of paediatric urinary tract infection (UTI) found in 30-50% of all children presenting with first UTI. Contrast-enhanced voiding ultrasonography (ceVUS) has become an important radiation-free method for VUR detection in children. Its sensitivity in detecting VUR has greatly improved due to the development of the contrast-specific ultrasound techniques and the introduction of the second-generation ultrasound contrast agent, superseding the diagnostic accuracy of standard radiological procedures.AIM: This article aimed to summarise the current literature and discuss the first local pilot study performed in our institution on detection of vesicoureteric reflux by contrast-enhanced voiding ultrasonography with second- generation agent (SonoVue, Bracco, Italy).MATERIAL AND METHODS: Retrospective review of the first 31 ceVUS (24 girls, 7 boys) was presented.  Age range was 2 months to 18 years (mean = 6.4 ± 4.9).RESULTS:  All examinations were well tolerated without any adverse incident. VUR was shown in 20 (64.5%) children in 32/62 (51.6) nephroureteral units (NUUs). In 18 NUUs, VUR was grade II/V, in 11 Grade III/V and in 3 grade IV/V, respectively. Urethra was shown in 19/31 children and in all boys, without pathological finding. In two girls spinning top urethra has been detected. Subsequent urodynamic studies revealed functional bladder problem in both. CONCLUSIONS: Contrast-enhanced voiding urosonography using intravesical second generation ultrasound contrast agent could be recommend  as a valid alternative diagnostic modality for detecting vesicoureteral reflux and evaluation of the distal urinary tract in children, based on its radiation-free, highly efficacious, reliable, and safe characteristics.


Neurosurgery ◽  
2014 ◽  
Vol 74 (5) ◽  
pp. 542-552 ◽  
Author(s):  
Francesco Prada ◽  
Alessandro Perin ◽  
Alberto Martegani ◽  
Luca Aiani ◽  
Luigi Solbiati ◽  
...  

Abstract BACKGROUND: Contrast-enhanced ultrasound (CEUS) is a dynamic and continuous modality that offers a real-time, direct view of vascularization patterns and tissue resistance for many organs. Thanks to newer ultrasound contrast agents, CEUS has become a well-established, live-imaging technique in many contexts, but it has never been used extensively for brain imaging. The use of intraoperative CEUS (iCEUS) imaging in neurosurgery is limited. OBJECTIVE: To provide the first dynamic and continuous iCEUS evaluation of a variety of brain lesions. METHODS: We evaluated 71 patients undergoing iCEUS imaging in an off-label setting while being operated on for different brain lesions; iCEUS imaging was obtained before resecting each lesion, after intravenous injection of ultrasound contrast agent. A semiquantitative, offline interobserver analysis was performed to visualize each brain lesion and to characterize its perfusion features, correlated with histopathology. RESULTS: In all cases, the brain lesion was visualized intraoperatively with iCEUS. The afferent and efferent blood vessels were identified, allowing evaluation of the time and features of the arterial and venous phases and facilitating the surgical strategy. iCEUS also proved to be useful in highlighting the lesion compared with standard B-mode imaging and showing its perfusion patterns. No adverse effects were observed. CONCLUSION: Our study is the first large-scale implementation of iCEUS in neurosurgery as a dynamic and continuous real-time imaging tool for brain surgery and provides the first iCEUS characterization of different brain neoplasms. The ability of CEUS to highlight and characterize brain tumor will possibly provide the neurosurgeon with important information anytime during a surgical procedure.


Sign in / Sign up

Export Citation Format

Share Document