scholarly journals An Improved Genetic Fuzzy Logic Control Method to Reduce the Enlargement of Coal Floor Deformation in Shearer Memory Cutting Process

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Chao Tan ◽  
Rongxin Xu ◽  
Zhongbin Wang ◽  
Lei Si ◽  
Xinhua Liu

In order to reduce the enlargement of coal floor deformation and the manual adjustment frequency of rocker arms, an improved approach through integration of improved genetic algorithm and fuzzy logic control (GFLC) method is proposed. The enlargement of coal floor deformation is analyzed and a model is built. Then, the framework of proposed approach is built. Moreover, the constituents of GA such as tangent function roulette wheel selection (Tan-RWS) selection, uniform crossover, and nonuniform mutation are employed to enhance the performance of GFLC. Finally, two simulation examples and an industrial application example are carried out and the results indicate that the proposed method is feasible and efficient.

Author(s):  
Desi Fatkhi Azizah ◽  
Khen Dedes ◽  
Agung Bella Putra Utama ◽  
Aripriharta

Author(s):  
LiHong Yuan ◽  
V. M. Ja¨rvenpa¨a¨ ◽  
Erno Keskinen

This paper proposes application of fuzzy logic control (FLC) to do vibration control for the roll-grinding machine system with double regenerative chatter. In this paper, a multiple-degree-of-freedom (MDOF) model is developed to represent the dynamics behaviors of this kind of system. The dynamic system has double delays and lumped cutting parameters which make vibration control challenging. Numerical simulation shows that FLC can dramatically reduce the vibration levels compared to a convention control method.


2012 ◽  
Vol 152-154 ◽  
pp. 1639-1644
Author(s):  
Amirhossein Asadabadi ◽  
Amir M. Anvar

Recently small satellites have become increasingly popular because of their ability to provide educational institutes with the chance to design, construct, and test their spacecraft from beginning to the possible launch due to the low launching cost and development of microelectronics (Figure 1). Clearly, using only electromagnetic coils instead of different types of actuators will serve the purpose of weight reduction where every grams counts. But some restrictions described in the paper limit utilising only “Electromagnetic” actuation for 3D stabilisation and adversely affects the efficiency of the controller. However, there are some theories developed recently that have made the aforementioned purpose feasible. In this paper a new control method based on Fuzzy Logic Control (FLC) is presented that keeps the satellite in desired conditions only by electromagnetic coils. More precisely, an approach of Fuzzy control which is incorporated with electromagnetic actuation is presented for the in-orbit attitude control of a small satellite. The design is developed to stabilize the spacecraft against disturbances with a three-axis stabilizing capability. The paper also describes the required hardware and the design and development of the magnetic torquers.


Author(s):  
Md Rafiqul Islam Sheikh ◽  
Rion Takahashi ◽  
Junji Tamura

At present fuzzy logic control is receiving increasing emphasis in process control applications. The paper describes the application of fuzzy logic control in a power system that uses a 12- pulse bridge converter associated with Superconductive Magnetic Energy Storage (SMES) unit. The fuzzy control is used in both the frequency and voltage control loops, replacing the conventional control method. The control algorithms have been developed in detail and simulation results are presented. These results clearly indicate the superior performance of fuzzy control during the dynamic period of energy transfer between the power system and SMES unit. Keywords: Fuzzy logic controller; power system dynamic performance; SMES unit. DOI: http://dx.doi.org/10.3329/diujst.v6i2.9343 DIUJST 2011; 6(2): 33-41


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2151
Author(s):  
Deyong Shang ◽  
Zhiyuan Yang ◽  
Junjie Wang ◽  
Yuwei Wang ◽  
Yue Liu

Underground gangue filling technology in coal mines is one of the effective ways to realize green mining. In this paper, a process of underground raw coal primary selection is proposed, which is based on a mechanical sieve jig as the main washing equipment. It refers to the structure of the ground mechanical moving sieve jig. It optimizes and improves the main structure of the jig machine’s driving mechanism and gangue discharge mechanism. It meets the requirements of the technology and the narrow space environment in the underground mine and realizes the effective separation of coal and gangue. In the jigging process of a moving sieve, it is very important to keep the jig bed stable and precisely control the quantity of gangue discharge for improving the system separation accuracy and efficiency. In this paper, a control method based on a fuzzy logic combination is proposed to realize the fuzzy logic control of the motor speed of gangue discharging, which aims at the nonlinear, time-varying uncertainty and pure lag characteristics of the control system of the underground moving sieve jig. Further industrial experiments were carried out and we obtained the variation law of the gangue’s quality in the moving sieve and the output curve of the gangue motor frequency under three working conditions. The experimental results show that the fuzzy logic control algorithm can quickly stabilize the jig bed in the vibrating sieve when the quantity of gangue changes abruptly or fluctuates greatly. It improves the separation efficiency of coal and gangue and effectively solves the problems of nonlinearity, time-varying and hysteresis in the control process of the moving sieve jig.


Sign in / Sign up

Export Citation Format

Share Document