scholarly journals Upper Bound Solution of Safety Factor for Shallow Tunnels Face Using a Nonlinear Failure Criterion and Shear Strength Reduction Technique

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fu Huang ◽  
Zai-lan Li ◽  
Tong-hua Ling

A method to evaluate the stability of tunnel face is proposed in the framework of upper bound theorem. The safety factor which is widely applied in slope stability analysis is introduced to estimate the stability of tunnel face using the upper bound theorem of limit analysis in conjunction with a strength reduction technique. Considering almost all geomaterials following a nonlinear failure criterion, a generalized tangential technique is used to calculate the external work and internal energy dissipation in the kinematically admissible velocity field. The upper bound solution of safety factor is obtained by optimization calculation. To evaluate the validity of the method proposed in this paper, the safety factor is compared with those calculated by limit equilibrium method. The comparison shows the solutions derived from these two methods match each other well, which shows the method proposed in this paper can be considered as effective.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhidan Liu ◽  
Jingwu Zhang ◽  
Weiping Chen ◽  
Di Wu

Based on the upper bound theorem of limit analysis, this paper presents a procedure for assessment of the influence of the soil anisotropy and nonhomogeneity on the stability of fissured slopes subjected to seismic action. By means of a mathematical optimization procedure written in Matlab software codes, the stability factors NS and λcφ are derived with respect to the best upper bound solutions. A series of stability charts are obtained in this paper, and then the critical locations of cracks are determined for cracks of known depth. The results demonstrate a significant influence of the soil anisotropy and nonhomogeneity on the stability of the fissured slopes and the location distribution of the cracks. In addition, the procedures for getting the factor of safety are put forward. It is shown that a decrease in the nonhomogeneity coefficient n0 and an increase in the anisotropy coefficient k could lead to the fissured slopes becoming unsafe. Finally, this article also illustrates the variation in the safety factor of fissured slopes under the impact of three factors (Kh, H1/H, and λ).


2007 ◽  
Vol 345-346 ◽  
pp. 37-40 ◽  
Author(s):  
Gow Yi Tzou ◽  
Sergei Alexandrov

The choice of a kinematically admissible velocity field has a great effect on the predictive capacity of upper bound solutions. It is always advantageous, in addition to the formal requirements of the upper bound theorem, to select a class of velocity fields satisfying some additional conditions that follow from the exact formulation of the problem. In the case of maximum friction law, such an additional condition is that the real velocity field is singular in the vicinity of the friction surface. In the present paper this additional condition is incorporated in the class of kinematically admissible velocity fields chosen for a theoretical analysis of two - layer cylinders subject to compression and twist. An effect of the angular velocity of the die on process parameters is emphasized and discussed.


2014 ◽  
Vol 501-504 ◽  
pp. 27-31
Author(s):  
Ting Kai Nian ◽  
Kai Liu ◽  
Yan Jun Zhang ◽  
Dong Wang

The upper-bound method of limit analysis combined with strength reduction technique is employed to analyze the stability of an earth slope reinforced with multi-directional anchors. A homogeneous and isotropic earth slope reinforced with two rows of anchors is considered. Attempts are made to obtain the optimal angles of anchors. Parametric studies show that, for homogeneous and isotropic slopes, the optimal angle of the first row of anchors is 0°; while the optimal angle of the second row of anchors varies with anchor positions, and generally is less than 15°.


2014 ◽  
Vol 797 ◽  
pp. 117-122 ◽  
Author(s):  
Carolina Bermudo ◽  
F. Martín ◽  
Lorenzo Sevilla

It has been established, in previous studies, the best adaptation and solution for the implementation of the modular model, being the current choice based on the minimization of the p/2k dimensionless relation obtained for each one of the model, analyzed under the same boundary conditions and efforts. Among the different cases covered, this paper shows the study for the optimal choice of the geometric distribution of zones. The Upper Bound Theorem (UBT) by its Triangular Rigid Zones (TRZ) consideration, under modular distribution, is applied to indentation processes. To extend the application of the model, cases of different thicknesses are considered


Sign in / Sign up

Export Citation Format

Share Document