Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique

2010 ◽  
Vol 17 (4) ◽  
pp. 836-844 ◽  
Author(s):  
Lian-heng Zhao ◽  
Liang Li ◽  
Feng Yang ◽  
Qiang Luo ◽  
Xiang Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fu Huang ◽  
Zai-lan Li ◽  
Tong-hua Ling

A method to evaluate the stability of tunnel face is proposed in the framework of upper bound theorem. The safety factor which is widely applied in slope stability analysis is introduced to estimate the stability of tunnel face using the upper bound theorem of limit analysis in conjunction with a strength reduction technique. Considering almost all geomaterials following a nonlinear failure criterion, a generalized tangential technique is used to calculate the external work and internal energy dissipation in the kinematically admissible velocity field. The upper bound solution of safety factor is obtained by optimization calculation. To evaluate the validity of the method proposed in this paper, the safety factor is compared with those calculated by limit equilibrium method. The comparison shows the solutions derived from these two methods match each other well, which shows the method proposed in this paper can be considered as effective.


Sign in / Sign up

Export Citation Format

Share Document