scholarly journals Characterizations of Fuzzy Ideals in Coresiduated Lattices

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Yan Liu ◽  
Mucong Zheng
Keyword(s):  

The notions of fuzzy ideals are introduced in coresiduated lattices. The characterizations of fuzzy ideals, fuzzy prime ideals, and fuzzy strong prime ideals in coresiduated lattices are investigated and the relations between ideals and fuzzy ideals are established. Moreover, the equivalence of fuzzy prime ideals and fuzzy strong prime ideals is proved in prelinear coresiduated lattices. Furthermore, the conditions under which a fuzzy prime ideal is derived from a fuzzy ideal are presented in prelinear coresiduated lattices.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Biao Long Meng ◽  
Xiao Long Xin

In this paper we investigate further properties of fuzzy ideals of aBL-algebra. The notions of fuzzy prime ideals, fuzzy irreducible ideals, and fuzzy Gödel ideals of aBL-algebra are introduced and their several properties are investigated. We give a procedure to generate a fuzzy ideal by a fuzzy set. We prove that every fuzzy irreducible ideal is a fuzzy prime ideal but a fuzzy prime ideal may not be a fuzzy irreducible ideal and prove that a fuzzy prime idealωis a fuzzy irreducible ideal if and only ifω0=1and|Im⁡(ω)|=2. We give the Krull-Stone representation theorem of fuzzy ideals inBL-algebras. Furthermore, we prove that the lattice of all fuzzy ideals of aBL-algebra is a complete distributive lattice. Finally, it is proved that every fuzzy Boolean ideal is a fuzzy Gödel ideal, but the converse implication is not true.


Author(s):  
Pierre Carole Kengne ◽  
Blaise Blériot Koguep ◽  
Celestin Lele

This paper mainly focuses on building the fuzzy prime ideal theorem of residuated lattices. Firstly, we introduce the notion of fuzzy ideal generated by a fuzzy subset of a residuated lattice and we give a characterization. Also, we introduce different types of fuzzy prime ideals and establish existing relationships between them. We prove that any fuzzy maximal ideal is a fuzzy prime ideal in residuated lattice. Finally, we give and prove the fuzzy prime ideal theorem in residuated lattice.


2013 ◽  
Vol 38 ◽  
pp. 49-59
Author(s):  
MS Raihan

A convex subnearlattice of a nearlattice S containing a fixed element n?S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal n-ideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In this paper, we include several characterizations of those Pn(S) which form m-normal nearlattices. We also show that Pn(S) is m-normal if and only if for any m+1 distinct minimal prime n-ideals Po,P1,…., Pm of S, Po ? … ? Pm = S. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16548 Rajshahi University J. of Sci. 38, 49-59 (2010)


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Berhanu Assaye Alaba ◽  
Derso Abeje Engidaw

In this paper, we introduce the concept of L-fuzzy semiprime ideal in a general poset. Characterizations of L-fuzzy semiprime ideals in posets as well as characterizations of an L-fuzzy semiprime ideal to be L-fuzzy prime ideal are obtained. Also, L-fuzzy prime ideals in a poset are characterized.


1988 ◽  
Vol 53 (1) ◽  
pp. 284-293 ◽  
Author(s):  
T. G. Kucera

This is the second of two papers based on Chapter V of the author's Ph.D. thesis [K1]. For acknowledgements please refer to [K3]. In this paper I apply some of the ideas and techniques introduced in [K3] to the study of a very specific example. I obtain an upper bound for the positive Deissler rank of an injective module over a commutative Noetherian ring in terms of Krull dimension. The problem of finding lower bounds is vastly more difficult and is not addressed here, although I make a few comments and a conjecture at the end.For notation, terminology and definitions, I refer the reader to [K3]. I also use material on ideals and injective modules from [N] and [Ma]. Deissler's rank was introduced in [D].For the most part, in this paper all modules are unitary left modules over a commutative Noetherian ring Λ but in §1 I begin with a few useful results on totally transcendental modules and the relation between Deissler's rank rk and rk+.Recall that if P is a prime ideal of Λ, then an ideal I of Λ is P-primary if I ⊂ P, λ ∈ P implies that λn ∈ I for some n and if λµ ∈ I, λ ∉ P, then µ ∈ I. The intersection of finitely many P-primary ideals is again P-primary, and any P-primary ideal can be written as the intersection of finitely many irreducible P-primary ideals since Λ is Noetherian. Every irreducible ideal is P-primary for some prime ideal P. In addition, it will be important to recall that if P and Q are prime ideals, I is P-primary, J is Q-primary, and J ⊃ I, then Q ⊃ P. (All of these results can be found in [N].)


2016 ◽  
Vol 12 (02) ◽  
pp. 445-463 ◽  
Author(s):  
Sungjin Kim

For a field of definition [Formula: see text] of an abelian variety [Formula: see text] and prime ideal [Formula: see text] of [Formula: see text] which is of a good reduction for [Formula: see text], the structure of [Formula: see text] as abelian group is: [Formula: see text] where [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text]. We are interested in finding an asymptotic formula for the number of prime ideals [Formula: see text] with [Formula: see text], [Formula: see text] has a good reduction at [Formula: see text], [Formula: see text]. We succeed in proving this under the assumption of the Generalized Riemann Hypothesis (GRH). Unconditionally, we achieve a short range asymptotic for abelian varieties of CM type, and the full cyclicity theorem for elliptic curves over a number field containing the CM field.


1998 ◽  
Vol 40 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Jin Yong Kim ◽  
Jae Keol Park

AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | xn ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results.


2018 ◽  
Vol 16 (1) ◽  
pp. 1634-1650
Author(s):  
Rukchart Prasertpong ◽  
Manoj Siripitukdet

AbstractIn this paper, we introduce a rough set in a universal set based on cores of successor classes with respect to level in a closed unit interval under a fuzzy relation, and some interesting properties are investigated. Based on this point, we propose a rough completely prime ideal in a semigroup structure under a compatible preorder fuzzy relation, including the rough semigroup and rough ideal. Then we provide sufficient conditions for them. Finally, the relationships between rough completely prime ideals (rough semigroups and rough ideals) and their homomorphic images are verified.


2000 ◽  
Vol 43 (3) ◽  
pp. 312-319 ◽  
Author(s):  
David E. Dobbs

AbstractIf n and m are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring R with exactly n elements and exactly m prime ideals. Next, assuming the Axiom of Choice, it is proved that if R is a commutative ring and T is a commutative R-algebra which is generated by a set I, then each chain of prime ideals of T lying over the same prime ideal of R has at most 2|I| elements. A polynomial ring example shows that the preceding result is best-possible.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


Sign in / Sign up

Export Citation Format

Share Document