scholarly journals Optimal Tracking Performance of MIMO Discrete-Time Systems with Network Parameters

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Yang Chen ◽  
Weihua Gui ◽  
Zhi-Hong Guan ◽  
Shaowu Zhou ◽  
Cailun Huang

The optimal regulation properties of multi-input and multioutput (MIMO) discrete-time networked control systems (NCSs), over additive white Gaussian noise (AWGN) fading channels, based on state space representation, are investigated. The average performance index is introduced. Moreover, the regulation performance is measured by the control energy and the error energy of the system, and fundamental limitations are obtained. Two kinds of network parameters, fading and the additive white Gaussian noise, are considered. The best attainable regulation performance limitations can be obtained by the limiting steady state solution of the corresponding algebraic Riccati equation (ARE). The simulation results are given to demonstrate the main results of the theoretical development.

2012 ◽  
Vol 2 (2) ◽  
pp. 53-58
Author(s):  
Shaikh Enayet Ullah ◽  
Md. Golam Rashed ◽  
Most. Farjana Sharmin

In this paper, we made a comprehensive BER simulation study of a quasi- orthogonal space time block encoded (QO-STBC) multiple-input single output(MISO) system. The communication system under investigation has incorporated four digital modulations (QPSK, QAM, 16PSK and 16QAM) over an Additative White Gaussian Noise (AWGN) and Raleigh fading channels for three transmit and one receive antennas. In its FEC channel coding section, three schemes such as Cyclic, Reed-Solomon and ½-rated convolutionally encoding have been used. Under implementation of merely low complexity ML decoding based channel estimation and RSA cryptographic encoding /decoding algorithms, it is observable from conducted simulation test on encrypted text message transmission that the communication system with QAM digital modulation and ½-rated convolutionally encoding techniques is highly effective to combat inherent interferences under Raleigh fading and additive white Gaussian noise (AWGN) channels. It is also noticeable from the study that the retrieving performance of the communication system degrades with the lowering of the signal to noise ratio (SNR) and increasing in order of modulation.


Sign in / Sign up

Export Citation Format

Share Document