scholarly journals Three-Dimensional Unsteady State Temperature Distribution of Thin Rectangular Plate with Moving Point Heat Source

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yogita M. Ahire ◽  
Kirtiwant P. Ghadle

This paper deals with the study of thermal stresses in thin rectangular plate subjected to point heat source which changes its place along x-axis. Governing heat conduction equation has been solved by using integral transform technique. Results are obtained in the form of infinite series. As a special case, aluminum plate has been considered and results for thermal stresses have been computed numerically and graphically.

A hollow cylinder having cylindrical hole at the center has been examined under the temperature variation condition. This composition deals with study of temperature distribution in thin hollow cylinder and corresponding stresses. The author has worked to carry out the transient thermo elastic problem for evaluation of temperature distribution, displacement and thermal stresses of a thin hollow cylinder. The known non homogeneous boundary conditions are applied to obtain the solution of this problem. The integral transform technique yields the solution to the problem. The analysis contains an infinite series. The variation of said parameters observed and analyzed by using necessary graphs


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Peng-Fei Hou ◽  
Wei Luo ◽  
Andrew Y. T. Leung

We use the compact harmonic general solutions of transversely isotropic piezothermoelastic materials to construct the three-dimensional Green’s function of a steady point heat source on the surface of a semi-infinite transversely isotropic piezothermoelastic material by four newly introduced harmonic functions. All components of the coupled field are expressed in terms of elementary functions and are convenient to use. Numerical results for cadmium selenide are given graphically by contours.


Sign in / Sign up

Export Citation Format

Share Document