instantaneous point
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
A.V. Moshkov ◽  

The value and duration of attenuation of low frequency waves (1...10 kHz) in the presence of a strong local disturbance of the atmosphere have been estimated. Sources of significant local disturbances of the atmosphere are, for example, precipitation of energetic particles of radiation belts; electromagnetic pulses of lightning discharges; radiation of powerful low-frequency ground-based transmitters; invasion of large meteors. Strong local disturbances lead to an increase of ionization (concentration of free electrons) of the environment by several orders of magnitude in the region of space whose characteristic dimensions are comparable to the length of the wave (tens and hundreds of kilometers). As such a disturbance, we use the previously developed macroscopic model of an instantaneous, point release of a relatively large amount of energy in the atmosphere below the ionosphere. This model makes it possible to estimate the features of the propagation of low-frequency waves through the disturbed layer of the lower ionosphere by changing only two initial parameters: the disturbance energy and its initial height. It is shown that the attenuation value is almost independent of frequency and geo- and heliophysical conditions. For initial heights up to 50 km, the fading duration does not exceed ~ 2 min. With an increase of the initial altitude, the attenuation in the lower ionosphere becomes extremely large. However, for heights of 50 ... 70 km (depending on the value of energy), the horizontal size of the disturbance decreases significantly, which leads to a decrease in the fading time to tens of seconds for initial heights of more than 80 km.


Advection Diffusion Equation is a partial differential equation that describes the transport of pollutants in rivers. Its coefficients (dispersion and velocity) can be constant, dependent on space or time or both space and time. This study presents an analytical solution of a one dimensional non - homogeneous advection diffusion equation with temporally dependent coefficients, describing one dimensional pollutant transport in a section of a river. Temporal dependence is accounted for by considering a temporally dependent dispersion coefficient along an unsteady flow assuming that dispersion is proportional to the velocity. Transformations are used to convert the time dependent coefficients to constant coefficients and to eliminate the advection term. Analytical solution is obtained using Fourier transform method considering an instantaneous point source. Numerical results are presented. The findings show that concentration monotonically decreases with increasing distance and increasing time.


Author(s):  
Y. Guo ◽  
Q. Li ◽  
W. Wu

To accomplish the task of detecting the instantaneous point source, an on-board information real-time processing system is designed which can process the point-source detection with reconfigurable function. The system has the algorithm reconfigurable function, which can detect and extract the instantaneous point source from the remote sensing image. By using FPGA programming, the satellite target detection and processing algorithm can be update easily. At the same time, the software can be reconfigured to improve the system's information processing capabilities. The system has been verified by simulating real instantaneous source point target image data to meet the real-time processing requirements of instantaneous point source information detection.


Sign in / Sign up

Export Citation Format

Share Document