scholarly journals Low-Frequency Repetitive Transcranial Magnetic Stimulation for Stroke-Induced Upper Limb Motor Deficit: A Meta-Analysis

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Lan Zhang ◽  
Guoqiang Xing ◽  
Shiquan Shuai ◽  
Zhiwei Guo ◽  
Huaping Chen ◽  
...  

Background and Purpose. This meta-analysis aimed to evaluate the therapeutic potential of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) over the contralesional hemisphere on upper limb motor recovery and cortex plasticity after stroke.Methods. Databases of PubMed, Medline, ScienceDirect, Cochrane, and Embase were searched for randomized controlled trials published before Jun 31, 2017. The effect size was evaluated by using the standardized mean difference (SMD) and a 95% confidence interval (CI). Resting motor threshold (rMT) and motor-evoked potential (MEP) were also examined.Results. Twenty-two studies of 1 Hz LF-rTMS over the contralesional hemisphere were included. Significant efficacy was found on finger flexibility (SMD = 0.75), hand strength (SMD = 0.49), and activity dexterity (SMD = 0.32), but not on body function (SMD = 0.29). The positive changes of rMT (SMD = 0.38 for the affected hemisphere and SMD = −0.83 for the unaffected hemisphere) and MEP (SMD = −1.00 for the affected hemisphere and SMD = 0.57 for the unaffected hemisphere) were also significant.Conclusions. LF-rTMS as an add-on therapy significantly improved upper limb functional recovery especially the hand after stroke, probably through rebalanced cortical excitability of both hemispheres. Future studies should determine if LF-rTMS alone or in conjunction with practice/training would be more effective.Clinical Trial Registration Information. This trial is registered with unique identifierCRD42016042181.

2016 ◽  
Vol 03 (01) ◽  
pp. 002-006
Author(s):  
Lara Schrader ◽  
Sima Sadeghinejad ◽  
Jalleh Sadeghinejad ◽  
Movses Kazanchyan ◽  
Lisa Koski ◽  
...  

Abstract Background/objectives Optimal low frequency repetitive transcranial magnetic stimulation (LF-rTMS) parameters for treating epilepsy and other brain disorders are unknown. To address this question, a systematic study of the effects of LF-rTMS frequency and intensity on cortical excitability was performed. Methods Using a four-period crossover design, subjects were scheduled for four LF-rTMS sessions that were at least four weeks apart. LF-rTMS was delivered as 900 pulses directed at primary motor cortex using four protocols: 0.5 Hz at 90% resting motor threshold (RMT), 0.5 Hz at 110% RMT, 1 Hz at 90% RMT, and 1 Hz at 110% RMT. Motor evoked potential (MEP) amplitude, resting motor threshold (RMT), and cortical silent period (CSP) were measured before, immediately after, and 60 min after LF-rTMS. Each of the four protocols was analyzed separately to compare baseline measurements to those after LF-rTMS. Results None of the four LF-rTMS protocols produced a trend or significant change in MEP amplitude, RMT, or CSP. Conclusion The lack of significant effect from the four LF-rTMS protocols indicates that none produced evidence for alteration of cortical excitability. The direct comparison of four LF-rTMS protocols is distinct to this investigation, as most similar studies were exploratory and studied only one or two protocols. The negative result relates only to the methods used in this investigation and does not indicate that LF-rTMS does not alter cortical excitability with other parameters. These results may be useful when designing additional investigations into the effect of LF-rTMS on epilepsy, other disorders, and cortical excitability.


2020 ◽  
Vol 47 (4) ◽  
pp. 427-434
Author(s):  
Mohammed S. El-Tamawy ◽  
Moshera H. Darwish ◽  
Saly H. Elkholy ◽  
Engy BadrEldin S. Moustafa ◽  
Shimaa T. Abulkassem ◽  
...  

BACKGROUND: Cortical reorganization between both cerebral hemispheres plays an important role in regaining the affected upper extremity motor function post-stroke. OBJECTIVES: The purpose of the current study was to investigate the recommended number of contra-lesion low frequency repetitive transcranial magnetic stimulation (LF-rTMS) sessions that could enhance cortical reorganization post-stroke. METHODS: Forty patients with right hemiparetic subacute ischemic stroke with an age range between 50–65 yrs were randomly assigned into two equal groups: control (GA) and study (GB) groups. Both groups were treated with a selected physical therapy program for the upper limb. Sham and real contra-lesion LF-rTMS was conducted for both groups daily for two consecutive weeks. Sequential changes of cortical excitability were calculated by the end of each session. RESULTS: The significant enhancement in the cortical excitability was observed at the fourth session in favor of the study group (GB). Sequential rate of change in cortical excitability was significant for the first eight sessions. From the ninth session onwards, no difference could be detected between groups. CONCLUSION: The pattern of recovery after stroke is extensive and not all factors could be controlled. Application of LF-rTMS in conjugation with a selected physical therapy program for the upper limb from four to eight sessions seems to be efficient.


2006 ◽  
Vol 101 (2) ◽  
pp. 500-505 ◽  
Author(s):  
Gabrielle Todd ◽  
Stanley C. Flavel ◽  
Michael C. Ridding

Repetitive transcranial magnetic stimulation of the motor cortex (rTMS) can be used to modify motor cortical excitability in human subjects. At stimulus intensities near to or above resting motor threshold, low-frequency rTMS (∼1 Hz) decreases motor cortical excitability, whereas high-frequency rTMS (5–20 Hz) can increase excitability. We investigated the effect of 10 min of intermittent rTMS on motor cortical excitability in normal subjects at two frequencies (2 or 6 Hz). Three low intensities of stimulation (70, 80, and 90% of active motor threshold) and sham stimulation were used. The number of stimuli were matched between conditions. Motor cortical excitability was investigated by measurement of the motor-evoked potential (MEP) evoked by single magnetic stimuli in the relaxed first dorsal interosseus muscle. The intensity of the single stimuli was set to evoke baseline MEPs of ∼1 mV in amplitude. Both 2- and 6-Hz stimulation, at 80% of active motor threshold, reduced the magnitude of MEPs for ∼30 min ( P < 0.05). MEPs returned to baseline values after a weak voluntary contraction. Stimulation at 70 and 90% of active motor threshold and sham stimulation did not induce a significant group effect on MEP magnitude. However, the intersubject response to rTMS at 90% of active motor threshold was highly variable, with some subjects showing significant MEP facilitation and others inhibition. These results suggest that, at low stimulus intensities, the intensity of stimulation may be as important as frequency in determining the effect of rTMS on motor cortical excitability.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Takahiro Kondo ◽  
Naoki Yamada ◽  
Ryo Momosaki ◽  
Masato Shimizu ◽  
Masahiro Abo

Background. The purpose of this study was to evaluate the difference between the therapeutic effect of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and that of continuous theta burst stimulation (cTBS), when each is combined with intensive occupational therapy (OT), in poststroke patients with upper limb hemiparesis. Materials and Methods. The study subjects were 103 poststroke patients with upper limb hemiparesis, who were divided into two groups: the LF-rTMS group (n=71) and the cTBS group (three pulse bursts at 50 Hz) (n=32). Each subject received 12 sessions of repetitive transcranial magnetic stimulation of 2,400 pulses applied to the nonlesional hemisphere and 240-min intensive OT (two 60-min one-to-one training sessions and two 60-min self-training exercises) daily for 15 days. Motor function was evaluated using the Fugl-Meyer Assessment (FMA) and the performance time of the Wolf motor function test (WMFT) was determined on the days of admission and discharge. Results. Both groups showed a significant increase in the FMA score and a short log performance time of the WMFT (p<0.001), but the increase in the FMA score was higher in the LF-rTMS group than the cTBS group (p<0.05). Conclusion. We recommend the use of 2400 pulses of LF-rTMS/OT for 2 weeks as treatment for hemiparetic patients.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
S Ashour ◽  
A Gaber ◽  
T Hussein ◽  
A Kamal

Abstract Copyright 2019 Department of Neuropsychiatry, Ain Shams University. Unauthorized reproduction of this article is prohibited Purpose This study was designed to evaluate the therapeutic effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) on patients with drug resistant focal epilepsy. Methods Fifty-five patients with drug resistant neocortical focal epilepsy were screened and 30 patients were divided into two groups (active and sham ) were given (0.5 hz , 1000 pulses , 90%of resting motor threshold (rMT)) on stimulation site detected by correlation between clinical semiology, EEG and or MRI finding. Seizures frequency, severity and seizure free days were compared for one month before and after rTMS with no change in antiepileptic drugs. We assumed 50% seizure reductionrate after rTMS. Results Seizures significantly decreased following rTMS treatment 50% seizure reduction was achieved 87.5%inthe active rTMS groupand50% in the sham rTMS group(p &gt; 0.03).in the follow-up period compared to baseline period. Seizure free days %increase in active group 20.7% compared to sham group 7.5% (p = 0.0501). Significance Low-frequency rTMS delivered into the epileptogenic zone had a significant antiepileptic effect on patients with drug resistant neocortical focal epilepsy. © 2018 Department of Neuropsychiatry, Ain Shams University


Sign in / Sign up

Export Citation Format

Share Document