scholarly journals Ulam Type Stability for a Coupled System of Boundary Value Problems of Nonlinear Fractional Differential Equations

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Aziz Khan ◽  
Kamal Shah ◽  
Yongjin Li ◽  
Tahir Saeed Khan

We discuss existence, uniqueness, and Hyers-Ulam stability of solutions for coupled nonlinear fractional order differential equations (FODEs) with boundary conditions. Using generalized metric space, we obtain some relaxed conditions for uniqueness of positive solutions for the mentioned problem by using Perov’s fixed point theorem. Moreover, necessary and sufficient conditions are obtained for existence of at least one solution by Leray-Schauder-type fixed point theorem. Further, we also develop some conditions for Hyers-Ulam stability. To demonstrate our main result, we provide a proper example.


2019 ◽  
Vol 52 (1) ◽  
pp. 283-295 ◽  
Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Jehad Alzabut

AbstractIn this paper, existence and uniqueness of solution for a coupled impulsive Hilfer–Hadamard type fractional differential system are obtained by using Kransnoselskii’s fixed point theorem. Different types of Hyers–Ulam stability are also discussed.We provide an example demonstrating consistency to the theoretical findings.



2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Mohamed Hannabou ◽  
Hilal Khalid

The study of coupled systems of hybrid fractional differential equations requires the attention of scientists for the exploration of their different important aspects. Our aim in this paper is to study the existence and uniqueness of the solution for impulsive hybrid fractional differential equations. The novelty of this work is the study of a coupled system of impulsive hybrid fractional differential equations with initial and boundary hybrid conditions. We used the classical fixed-point theorems such as the Banach fixed-point theorem and Leray–Schauder alternative fixed-point theorem for existence results. We also give an example of the main results.



Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 333 ◽  
Author(s):  
Kui Liu ◽  
Michal Fečkan ◽  
D. O’Regan ◽  
JinRong Wang

In this paper, the Hyers–Ulam stability of linear Caputo–Fabrizio fractional differential equation is established using the Laplace transform method. We also derive a generalized Hyers–Ulam stability result via the Gronwall inequality. In addition, we establish existence and uniqueness of solutions for nonlinear Caputo–Fabrizio fractional differential equations using the generalized Banach fixed point theorem and Schaefer’s fixed point theorem. Finally, two examples are given to illustrate our main results.



2020 ◽  
Vol 24 (2) ◽  
pp. 195-204
Author(s):  
Mohamed I. Abbas

By employing Kuratowski's measure of noncompactness together with Sadovskii's fixed point theorem, sufficient conditions for controllability results of Hilfer-Katugampola fractional differential equations in Banach spaces are derived.



2018 ◽  
Vol 21 (4) ◽  
pp. 1120-1138 ◽  
Author(s):  
Devaraj Vivek ◽  
Kuppusamy Kanagarajan ◽  
Seenith Sivasundaram

Abstract In this paper, we study the existence and stability of Hilfer-type fractional differential equations (dynamic equations) on time scales. We obtain sufficient conditions for existence and uniqueness of solutions by using classical fixed point theorems such as Schauder's fixed point theorem and Banach fixed point theorem. In addition, Ulam stability of the proposed problem is also discussed. As in application, we provide an example to illustrate our main results.



Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2068
Author(s):  
Alberto M. Simões ◽  
Fernando Carapau ◽  
Paulo Correia

In this work, we present sufficient conditions in order to establish different types of Ulam stabilities for a class of higher order integro-differential equations. In particular, we consider a new kind of stability, the σ-semi-Hyers-Ulam stability, which is in some sense between the Hyers–Ulam and the Hyers–Ulam–Rassias stabilities. These new sufficient conditions result from the application of the Banach Fixed Point Theorem, and by applying a specific generalization of the Bielecki metric.



Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Naveed Ahmad ◽  
Zeeshan Ali ◽  
Kamal Shah ◽  
Akbar Zada ◽  
Ghaus ur Rahman

We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to demonstrate our main theoretical results.



2021 ◽  
Vol 5 (4) ◽  
pp. 200
Author(s):  
Fatemeh Mottaghi ◽  
Chenkuan Li ◽  
Thabet Abdeljawad ◽  
Reza Saadati ◽  
Mohammad Bagher Ghaemi

Using Krasnoselskii’s fixed point theorem and Arzela–Ascoli theorem, we investigate the existence of solutions for a system of nonlinear ϕ-Hilfer fractional differential equations. Moreover, applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. We also apply our main results to study the existence and Kummer stability of Lotka–Volterra’s equations that are useful to describe and characterize the dynamics of biological systems.



2021 ◽  
Vol 2 (3) ◽  
pp. 9-20
Author(s):  
VARSHINI S ◽  
BANUPRIYA K ◽  
RAMKUMAR K ◽  
RAVIKUMAR K

The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques.



Sign in / Sign up

Export Citation Format

Share Document