scholarly journals An Anonymous Access Authentication Scheme Based on Proxy Ring Signature for CPS-WMNs

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Tianhan Gao ◽  
Quanqi Wang ◽  
Xiaojie Wang ◽  
Xiaoxue Gong

Access security and privacy have become a bottleneck for the popularization of future Cyber-Physical System (CPS) networks. Furthermore, users’ need for privacy-preserved access during movement procedure is more urgent. To address the anonymous access authentication issue for CPS Wireless Mesh Network (CPS-WMN), a novel anonymous access authentication scheme based on proxy ring signature is proposed. A hierarchical authentication architecture is presented first. The scheme is then achieved from the aspect of intergroup and intragroup anonymous mutual authentication through proxy ring signature mechanism and certificateless signature mechanism, respectively. We present a formal security proof of the proposed protocol with SVO logic. The simulation and performance analysis demonstrate that the proposed scheme owns higher efficiency and adaptability than the typical one.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mengting Yao ◽  
Xiaoming Wang ◽  
Qingqing Gan ◽  
Yijian Lin ◽  
Chengpeng Huang

Vehicular ad hoc network (VANETs) plays a major part in intelligent transportation to enhance traffic efficiency and safety. Security and privacy are the essential matters needed to be tackled due to the open communication channel. Most of the existing schemes only provide message authentication without identity authentication, especially the inability to support forward secrecy which is a major security goal of authentication schemes. In this article, we propose a privacy-preserving mutual authentication scheme with batch verification for VANETs which support both message authentication and identity authentication. More importantly, the proposed scheme achieves forward secrecy, which means the exposure of the shared key will not compromise the previous interaction. The security proof shows that our scheme can withstand various known security attacks, such as the impersonation attack and forgery attack. The experiment analysis results based on communication and computation cost demonstrate that our scheme is more efficient compared with the related schemes.


Author(s):  
Aakanksha Tewari ◽  
Brij B. Gupta

Internet of Things (IoT) is playing more and more important roles in our daily lives in the last decade. It can be a part of traditional machine or equipment to daily household objects as well as wireless sensor networks and devices. IoT has a huge potential which is still to be unleashed. However, as the foundation of IoT is the Internet and all the data collected by these devices is over the Internet, these devices also face threats to security and privacy. At the physical or sensor layer of IoT devices the most commonly used technology is RFID. Thus, securing the RFID tag by cryptographic mechanisms can secure our data at the device as well as during communication. This article first discusses the flaws of our previous ultra-lightweight protocol due to its vulnerability to passive secret disclosure attack. Then, the authors propose a new protocol to overcome the shortcomings of our previous work. The proposed scheme uses timestamps in addition to bitwise operation to provide security against de-synchronization and disclosure. This research also presents a security and performance analysis of our approach and its comparison with other existing schemes.


Sign in / Sign up

Export Citation Format

Share Document