scholarly journals An Improved and Privacy-Preserving Mutual Authentication Scheme with Forward Secrecy in VANETs

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mengting Yao ◽  
Xiaoming Wang ◽  
Qingqing Gan ◽  
Yijian Lin ◽  
Chengpeng Huang

Vehicular ad hoc network (VANETs) plays a major part in intelligent transportation to enhance traffic efficiency and safety. Security and privacy are the essential matters needed to be tackled due to the open communication channel. Most of the existing schemes only provide message authentication without identity authentication, especially the inability to support forward secrecy which is a major security goal of authentication schemes. In this article, we propose a privacy-preserving mutual authentication scheme with batch verification for VANETs which support both message authentication and identity authentication. More importantly, the proposed scheme achieves forward secrecy, which means the exposure of the shared key will not compromise the previous interaction. The security proof shows that our scheme can withstand various known security attacks, such as the impersonation attack and forgery attack. The experiment analysis results based on communication and computation cost demonstrate that our scheme is more efficient compared with the related schemes.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Libing Wu ◽  
Jing Wang ◽  
Sherali Zeadally ◽  
Debiao He

Smart grid has emerged as the next-generation electricity grid with power flow optimization and high power quality. Smart grid technologies have attracted the attention of industry and academia in the last few years. However, the tradeoff between security and efficiency remains a challenge in the practical deployment of the smart grid. Most recently, Li et al. proposed a lightweight message authentication scheme with user anonymity and claimed that their scheme is provably secure. But we found that their scheme fails to achieve mutual authentication and mitigate some typical attacks (e.g., impersonation attack, denial of service attack) in the smart grid environment. To address these drawbacks, we present a new message authentication scheme with reasonable efficiency. Security and performance analysis results show that the proposed scheme can satisfy the security and lightweight requirements of practical implementations and deployments of the smart grid.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Tianhan Gao ◽  
Quanqi Wang ◽  
Xiaojie Wang ◽  
Xiaoxue Gong

Access security and privacy have become a bottleneck for the popularization of future Cyber-Physical System (CPS) networks. Furthermore, users’ need for privacy-preserved access during movement procedure is more urgent. To address the anonymous access authentication issue for CPS Wireless Mesh Network (CPS-WMN), a novel anonymous access authentication scheme based on proxy ring signature is proposed. A hierarchical authentication architecture is presented first. The scheme is then achieved from the aspect of intergroup and intragroup anonymous mutual authentication through proxy ring signature mechanism and certificateless signature mechanism, respectively. We present a formal security proof of the proposed protocol with SVO logic. The simulation and performance analysis demonstrate that the proposed scheme owns higher efficiency and adaptability than the typical one.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1687 ◽  
Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

The security and privacy issues in vehicular ad hoc networks (VANETs) are often addressed with schemes based on either public key infrastructure, group signature, or identity. However, none of these schemes appropriately address the efficient verification of multiple VANET messages in high-density traffic areas. Attackers could obtain sensitive information kept in a tamper-proof device (TPD) by using a side-channel attack. In this paper, we propose an identity-based conditional privacy-preserving authentication scheme that supports a batch verification process for the simultaneous verification of multiple messages by each node. Furthermore, to thwart side-channel attacks, vehicle information in the TPD is periodically and frequently updated. Finally, since the proposed scheme does not utilize the bilinear pairing operation or the Map-To-Point hash function, its performance outperforms other schemes, making it viable for large-scale VANETs deployment.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Younghwa An

Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das’s authentication scheme, and we have shown that Das’s authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das’s authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.


Sign in / Sign up

Export Citation Format

Share Document