access authentication
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 33)

H-INDEX

9
(FIVE YEARS 3)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mohammad Farukh Hashmi ◽  
B. Kiran Kumar Ashish ◽  
Prabhu Chaitanya ◽  
Avinash Keskar ◽  
Sinan Q. Salih ◽  
...  

Gait walking patterns are one of the key research topics in natural biometrics. The temporal information of the unique gait sequence of a person is preserved and used as a powerful data for access. Often there is a dive into the flexibility of gait sequence due to unstructured and unnecessary sequences that tail off the necessary sequence constraints. The authors in this work present a novel perspective, which extracts useful gait parameters regarded as independent frames and patterns. These patterns and parameters mark as unique signature for each subject in access authentication. This information extracted learns to identify the patterns associated to form a unique gait signature for each person based on their style, foot pressure, angle of walking, angle of bending, acceleration of walk, and step-by-step distance. These parameters form a unique pattern to plot under unique identity for access authorization. This sanitized data of patterns is further passed to a residual deep convolution network that automatically extracts the hierarchical features of gait pattern signatures. The end layer comprises of a Softmax classifier to classify the final prediction of the subject identity. This state-of-the-art work creates a gait-based access authentication that can be used in highly secured premises. This work was specially designed for Defence Department premises authentication. The authors have achieved an accuracy of 90 % ± 1.3 % in real time. This paper mainly focuses on the assessment of the crucial features of gait patterns and analysis of gait patterns research.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012054
Author(s):  
Yu Wang ◽  
Zongchun Wei ◽  
Haibo Bao ◽  
Gaofeng Deng ◽  
Jiangwei Li ◽  
...  

Abstract In order to solve the problem that the process of WAPI terminal connection is troublesome, this paper proposes an intelligent support and command system of WAPI terminal equipment based on centralized control AC + AP architecture. The system stores WAPI certificate on AC (centralized controller), WAPI terminal equipment is associated with AP (wireless access point), and AP equipment notifies AC of the associated events of the terminal, AC equipment and terminal equipment enter authentication and complete certificate authentication. Complete access authentication through AC and terminal equipment, and store the unicast and multicast keys generated by authentication negotiation on AC. This method is more convenient to maintain the certificate. At the same time, on the premise of ensuring the security of the certificate, it also improves the encryption and decryption efficiency and improves the user’s business experience.


2021 ◽  
Author(s):  
Helen Cheung

The intent of this thesis research is to develop a concept/methodology to advance technologies for controls of network accesses to the industrial processes of safety/operation-critical and to contribute to the nuclear process control modernization with improved nuclear operation security and consequently increased nuclear safety and cost savings. This thesis is focused on the security-integrated nuclear process network-access controls for modernizing nuclear operations. This thesis research commenced with assessments of the current states of nuclear processes in the live nuclear generating stations and identified improvements on the current nuclear practices and security concerns of using the network-based intelligent features of modern process controls for nuclear operations. This thesis has created SNP - Security-integrated Nuclear Process, OBAC - Operation Based Access Control, NOAA - Nuclear Operation Access Authentication, CSM - Cost Savings Model, etc. as the fundamental developments for contributions to the nuclear operations modernization with improved operation security and subsequently increased nuclear safety and cost savings in daily nuclear operations. The SNP is to transform the current nuclear practices into network-based nuclear operations that include equipment performance monitoring, nuclear data processing, nuclear equipment control and maintenance. The OBAC is an operation-based access control built upon the core nuclear operations and facilitates the security and quality controls of network accesses to nuclear operations. The NOAA is to provide user security authentication for access to nuclear operation network, which is composed of APP for access pre-access authentication and AQP for access qualification authentication. The CSM is designed for evaluations of the SNP and associated designs in terms of cost savings opportunity. The feasibility and practicality of these new designs are illustrated in the thesis, by analytical and numerical methods. The significance of these new designs is tremendous, resulting in potentially significant cost savings in daily nuclear generation, in addition with increased nuclear operation network security and subsequently the nuclear safety that is priceless.


2021 ◽  
Author(s):  
Helen Cheung

The intent of this thesis research is to develop a concept/methodology to advance technologies for controls of network accesses to the industrial processes of safety/operation-critical and to contribute to the nuclear process control modernization with improved nuclear operation security and consequently increased nuclear safety and cost savings. This thesis is focused on the security-integrated nuclear process network-access controls for modernizing nuclear operations. This thesis research commenced with assessments of the current states of nuclear processes in the live nuclear generating stations and identified improvements on the current nuclear practices and security concerns of using the network-based intelligent features of modern process controls for nuclear operations. This thesis has created SNP - Security-integrated Nuclear Process, OBAC - Operation Based Access Control, NOAA - Nuclear Operation Access Authentication, CSM - Cost Savings Model, etc. as the fundamental developments for contributions to the nuclear operations modernization with improved operation security and subsequently increased nuclear safety and cost savings in daily nuclear operations. The SNP is to transform the current nuclear practices into network-based nuclear operations that include equipment performance monitoring, nuclear data processing, nuclear equipment control and maintenance. The OBAC is an operation-based access control built upon the core nuclear operations and facilitates the security and quality controls of network accesses to nuclear operations. The NOAA is to provide user security authentication for access to nuclear operation network, which is composed of APP for access pre-access authentication and AQP for access qualification authentication. The CSM is designed for evaluations of the SNP and associated designs in terms of cost savings opportunity. The feasibility and practicality of these new designs are illustrated in the thesis, by analytical and numerical methods. The significance of these new designs is tremendous, resulting in potentially significant cost savings in daily nuclear generation, in addition with increased nuclear operation network security and subsequently the nuclear safety that is priceless.


Author(s):  
Sudan Jha ◽  
Sultan Ahmad ◽  
Meshal Alharbi ◽  
Bader Alouffi ◽  
Shoney Sebastian

Sign in / Sign up

Export Citation Format

Share Document