scholarly journals A Guide on Spectral Methods Applied to Discrete Data in One Dimension

2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Martin Seilmayer ◽  
Matthias Ratajczak

This paper provides an overview about the usage of the Fourier transform and its related methods and focuses on the subtleties to which the users must pay attention. Typical questions, which are often addressed to the data, will be discussed. Such a problem can be the origin of frequency or band limitation of the signal or the source of artifacts, when a Fourier transform is carried out. Another topic is the processing of fragmented data. Here, the Lomb-Scargle method will be explained with an illustrative example to deal with this special type of signal. Furthermore, the time-dependent spectral analysis, with which one can evaluate the point in time when a certain frequency appears in the signal, is of interest. The goal of this paper is to collect the important information about the common methods to give the reader a guide on how to use these for application on one-dimensional data. The introduced methods are supported by the spectral package, which has been published for the statistical environment R prior to this article.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 597 ◽  
Author(s):  
Miguel Iglesias-Martínez ◽  
Jose Antonino-Daviu ◽  
Pedro Fernández de Córdoba ◽  
J. Conejero

The aim of this work is to find out, through the analysis of the time and frequency domains, significant differences that lead us to obtain one or several variables that may result in an indicator that allows diagnosing the condition of the rotor in an induction motor from the processing of the stray flux signals. For this, the calculation of two indicators is proposed: the first is based on the frequency domain and it relies on the calculation of the sum of the mean value of the bispectrum of the flux signal. The use of high order spectral analysis is justified in that with the one-dimensional analysis resulting from the Fourier Transform, there may not always be solid differences at the spectral level that enable us to distinguish between healthy and faulty conditions. Also, based on the high-order spectral analysis, differences may arise that, with the classical analysis with the Fourier Transform, are not evident, since the high order spectra from the Bispectrum are immune to Gaussian noise, but not the results that can be obtained using the one-dimensional Fourier transform. On the other hand, a second indicator based on the temporal domain that is based on the calculation of the square value of the median of the autocovariance function of the signal is evaluated. The obtained results are satisfactory and let us conclude the affirmative hypothesis of using flux signals for determining the condition of the rotor of an induction motor.


Author(s):  
Robert J Marks II

N dimensional signals are characterized as values in an N dimensional space. Each point in the space is assigned a value, possibly complex. Each dimension in the space can be discrete, continuous, or on a time scale. A black and white movie can be modelled as a three dimensional signal.Acolor picture can be modelled as three signals in two dimensions, one each, for example, for red, green and blue. This chapter explores Fourier characterization of different types of multidimensional signals and corresponding applications. Some signal characterizations are straightforward extensions of their one dimensional counterparts. Others, even in two dimensions, have properties not found in one dimensional signals. We are fortunate to be able to visualize structures in two, three, and sometimes four dimensions. It assists in the intuitive generalization of properties to higher dimensions. Fourier characterization of multidimensional signals allows straightforward modelling of reconstruction of images from their tomographic projections. Doing so is the foundation of certain medical and industrial imaging, including CAT (for computed axial tomography) scans. Multidimensional Fourier series are based on models found in nature in periodically replicated crystal Bravais lattices [987, 1188]. As is one dimension, the Fourier series components can be found from sampling the Fourier transform of a single period of the periodic signal. The multidimensional cosine transform, a relative of the Fourier transform, is used in image compression such as JPG images. Multidimensional signals can be filtered. The McClellan transform is a powerful method for the design of multidimensional filters, including generalization of the large catalog of zero phase one dimensional FIR filters into higher dimensions. As in one dimension, the multidimensional sampling theorem is the Fourier dual of the Fourier series. Unlike one dimension, sampling can be performed at the Nyquist density with a resulting dependency among sample values. This property can be used to reduce the sampling density of certain images below that of Nyquist, or to restore lost samples from those remaining. Multidimensional signal and image analysis is also the topic of Chapter 9 on time frequency representations, and Chapter 11 where POCS is applied signals in higher dimensions.


2015 ◽  
Vol 27 (6) ◽  
pp. 477-484 ◽  
Author(s):  
Florin Nemtanu ◽  
Ilona Madalina Costea ◽  
Catalin Dumitrescu

The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.


1999 ◽  
pp. 240-277
Author(s):  
Bernard Mulgrew ◽  
Peter Grant ◽  
John Thompson

Geophysics ◽  
1990 ◽  
Vol 55 (11) ◽  
pp. 1488-1495 ◽  
Author(s):  
R. Saatcilar ◽  
S. Ergintav ◽  
N. Canitez

The Hartley transform (HT) is an integral transform similar to the Fourier transform (FT). It has most of the characteristics of the FT. Several authors have shown that fast algorithms can be constructed for the fast Hartley transform (FHT) using the same structures as for the fast Fourier transform. However, the HT is a real transform and for this reason, since one complex multiplication requires four real multiplications, the discrete HT (DHT) is computationally faster than the discrete FT (DFT). Consequently, any process requiring the DFT (such as amplitude and phase spectra) can be performed faster by using the DHT. The general properties of the DHT are reviewed first, and then an attempt is made to use the FHT in some seismic data processing techniques such as one‐dimensional filtering, forward seismic modeling, and migration. The experiments show that the Hartley transform is two times faster than the Fourier transform.


GEOMATIKA ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 65 ◽  
Author(s):  
Mila Apriani ◽  
Admiral Musa Julius ◽  
Mahmud Yusuf ◽  
Damianus Tri Heryanto ◽  
Agus Marsono

<p align="center"><strong>ABSTRAK</strong></p><p> </p><p>Penelitian dengan analisis <em>power spectral</em> data anomali gayaberat telah banyak dilakukan untuk estimasi ketebalan sedimen. Dalam studi ini penulis melakukan analisis spektral data anomali gayaberat wilayah DKI Jakarta untuk mengetahui kedalaman sumber anomali yang bersesuaian dengan ketebalan sedimen. Data yang digunakan berupa data gayaberat dari BMKG tahun 2014 dengan 197 lokasi titik pengukuran yang tersebar di koordinat 6,08º-6,36º LU dan 106,68º-106,97º BT. Studi ini menggunakan metode <em>power spectral</em>  dengan mentransformasikan data dari domain jarak ke dalam domain bilangan gelombang memanfaatkan transformasi <em>Fourier</em>. Hasil penelitian dengan menggunakan metode transformasi <em>Fourier  </em>menunjukkan bahwa ketebalan sedimen di Jakarta dari arah selatan ke utara semakin besar, di sekitar Babakan ketebalan diperkirakan 92 meter, sekitar Tongkol, Jakarta Utara diperkirakan 331 meter.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>: <em>power spectral</em>, anomali gayaberat, ketebalan sedimen</p><p align="center"><strong><em> </em></strong></p><p align="center"><strong><em>ABSTRACT</em></strong></p><p><em> </em></p><p><em>Studies of spectral analysis of gravity anomaly data have been carried out to estimate the thickness of sediment. In this study the author did spectral analysis of gravity anomaly data of DKI Jakarta area to know the depth of anomaly source which corresponds to the thickness of sediment. The data used in the form of gravity data from BMKG 2014 with 197 locations of measurement points spread in coordinates 6.08º - 6.36º N and 106.68º - 106.97º E. This study used the power spectral method by transforming the data from the distance domain into the wavenumber domain utilizing the Fourier transform. The result of the research using Fourier transform method shows that the thickness of sediment in Jakarta from south to north is getting bigger, in Babakan the thickness of the sediment is around 92 meter, in Tongkol, North Jakarta is around 331 meter.</em></p><p><strong><em> </em></strong></p><p><strong><em>Keywords</em></strong><em>: </em><em>power spectral, gravity anomaly, sediment thickness</em><em></em></p>


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Pranesh Kumar ◽  
Arthur Western

The analysis of pulsars is a complicated procedure due to the influence of background radio waves. Special radio telescopes designed to detect pulsar signals have to employ many techniques to reconstruct interstellar signals and determine if they originated from a pulsating radio source. The Discrete Fourier Transform on its own has allowed astronomers to perform basic spectral analysis of potential pulsar signals. However, Radio Frequency Interference (RFI) makes the process of detecting and analyzing pulsars extremely difficult. This has forced astronomers to be creative in identifying and determining the specific characteristics of these unique rotating neutron stars. Astrophysicists have utilized algorithms such as the Fast Fourier Transform (FFT) to predict the spin period and harmonic frequencies of pulsars. However, FFT-based searches cannot be utilized alone because low-frequency pulsar signals go undetected in the presence of background radio noise. Astrophysicists must stack up pulses using the Fast Folding Algorithm (FFA) and utilize the coherent dedispersion technique to improve FFT sensitivity. The following research paper will discuss how the Discrete Fourier Transform is a useful technique for detecting radio signals and determining the pulsar frequency. It will also discuss how dedispersion and the pulsar frequency are critical for predicting multiple characteristics of pulsars and correcting the influence of the Interstellar Medium (ISM).


Sign in / Sign up

Export Citation Format

Share Document