scholarly journals Existence Results for Fractional Hahn Difference and Fractional Hahn Integral Boundary Value Problems

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nichaphat Patanarapeelert ◽  
Thanin Sitthiwirattham

The existence and uniqueness results of two fractional Hahn difference boundary value problems are studied. The first problem is a Riemann-Liouville fractional Hahn difference boundary value problem for fractional Hahn integrodifference equations. The second is a fractional Hahn integral boundary value problem for Caputo fractional Hahn difference equations. The Banach fixed-point theorem and the Schauder fixed-point theorem are used as tools to prove the existence and uniqueness of solution of the problems.

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jianjie Wang ◽  
Ali Mai ◽  
Hong Wang

Abstract This paper is mainly devoted to the study of one kind of nonlinear Schrödinger differential equations. Under the integrable boundary value condition, the existence and uniqueness of the solutions of this equation are discussed by using new Riesz representations of linear maps and the Schrödinger fixed point theorem.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yuanyuan Pan ◽  
Zhenlai Han ◽  
Shurong Sun ◽  
Yige Zhao

We study the existence of solutions for the boundary value problem-Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)),-Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)),y1(ν-2)=Δy1(ν+b)=0,y2(μ-2)=Δy2(μ+b)=0, where1<μ,ν≤2,f,g:R×R→Rare continuous functions,b∈N0. The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.


2021 ◽  
Vol 7 (1) ◽  
pp. 632-650
Author(s):  
Varaporn Wattanakejorn ◽  
◽  
Sotiris K. Ntouyas ◽  
Thanin Sitthiwirattham ◽  
◽  
...  

<abstract><p>In this paper, we study a boundary value problem consisting of Hahn integro-difference equation supplemented with four-point fractional Hahn integral boundary conditions. The novelty of this problem lies in the fact that it contains two fractional Hahn difference operators and three fractional Hahn integrals with different quantum numbers and orders. Firstly, we convert the given nonlinear problem into a fixed point problem, by considering a linear variant of the problem at hand. Once the fixed point operator is available, we make use the classical Banach's and Schauder's fixed point theorems to establish existence and uniqueness results. An example is also constructed to illustrate the main results. Several properties of fractional Hahn integral that will be used in our study are also discussed.</p></abstract>


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Yanping Guo ◽  
Wenying Wei ◽  
Yuerong Chen

We consider the multi-point discrete boundary value problem with one-dimensionalp-Laplacian operatorΔ(ϕp(Δu(t−1))+q(t)f(t,u(t),Δu(t))=0,t∈{1,…,n−1}subject to the boundary conditions:u(0)=0,u(n)=∑i=1m−2aiu(ξi), whereϕp(s)=|s|p−2s,p>1,ξi∈{2,…,n−2}with1<ξ1<⋯<ξm−2<n−1andai∈(0,1),0<∑i=1m−2ai<1. Using a new fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Thanin Sitthiwirattham ◽  
Jessada Tariboon ◽  
Sotiris K. Ntouyas

We study a new class of three-point boundary value problems of nonlinear second-orderq-difference equations. Our problems contain different numbers ofqin derivatives and integrals. By using a variety of fixed point theorems (such as Banach’s contraction principle, Boyd and Wong fixed point theorem for nonlinear contractions, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alternative) and Leray-Schauder degree theory, some new existence and uniqueness results are obtained. Illustrative examples are also presented.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Nawapol Phuangthong ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon ◽  
Kamsing Nonlaopon

In the present research, we study boundary value problems for fractional integro-differential equations and inclusions involving the Hilfer fractional derivative. Existence and uniqueness results are obtained by using the classical fixed point theorems of Banach, Krasnosel’skiĭ, and Leray–Schauder in the single-valued case, while Martelli’s fixed point theorem, a nonlinear alternative for multivalued maps, and the Covitz–Nadler fixed point theorem are used in the inclusion case. Examples are presented to illustrate our results.


2020 ◽  
Vol 18 (1) ◽  
pp. 1879-1894
Author(s):  
Cholticha Nuchpong ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

Abstract In this paper, we study boundary value problems of fractional integro-differential equations and inclusions involving Hilfer fractional derivative. Existence and uniqueness results are obtained by using the classical fixed point theorems of Banach, Krasnosel’skiĭ, and Leray-Schauder in the single-valued case, while Martelli’s fixed point theorem, nonlinear alternative for multi-valued maps, and Covitz-Nadler fixed point theorem are used in the inclusion case. Examples illustrating the obtained results are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xue Xu ◽  
Yong Wang

We study a general second-orderm-point boundary value problems for nonlinear singular impulsive dynamic equations on time scalesuΔ∇(t)+a(t)uΔ(t)+b(t)u(t)+q(t)f(t,u(t))=0,t∈(0,1),t≠tk,uΔ(tk+)=uΔ(tk)-Ik(u(tk)), andk=1,2,…,n,u(ρ(0))=0,u(σ(1))=∑i=1m-2αiu(ηi)‍.The existence and uniqueness of positive solutions are established by using the mixed monotone fixed point theorem on cone and Krasnosel’skii fixed point theorem. In this paper, the function items may be singular in its dependent variable. We present examples to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document