scholarly journals Differential Calculus onN-Graded Manifolds

2017 ◽  
Vol 2017 ◽  
pp. 1-19
Author(s):  
G. Sardanashvily ◽  
W. Wachowski

The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, overN-graded commutative rings and onN-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and onZ2-graded manifolds. We follow the notion of anN-graded manifold as a local-ringed space whose body is a smooth manifoldZ. A key point is that the graded derivation module of the structure ring of graded functions on anN-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its bodyZ. Accordingly, the Chevalley–Eilenberg differential calculus on anN-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus onN-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds ofN-graded bundles.

2014 ◽  
Vol 11 (04) ◽  
pp. 1450026 ◽  
Author(s):  
Serkan Karaçuha ◽  
Christian Lomp

Hom-connections and associated integral forms have been introduced and studied by Brzeziński as an adjoint version of the usual notion of a connection in non-commutative geometry. Given a flat hom-connection on a differential calculus (Ω, d) over an algebra A yields the integral complex which for various algebras has been shown to be isomorphic to the non-commutative de Rham complex (in the sense of Brzeziński et al. [Non-commutative integral forms and twisted multi-derivations, J. Noncommut. Geom.4 (2010) 281–312]). In this paper we shed further light on the question when the integral and the de Rham complex are isomorphic for an algebra A with a flat Hom-connection. We specialize our study to the case where an n-dimensional differential calculus can be constructed on a quantum exterior algebra over an A-bimodule. Criteria are given for free bimodules with diagonal or upper-triangular bimodule structure. Our results are illustrated for a differential calculus on a multivariate quantum polynomial algebra and for a differential calculus on Manin's quantum n-space.


2008 ◽  
Vol 191 ◽  
pp. 79-110
Author(s):  
Bernard Le Stum ◽  
Adolfo Quirós

AbstractWe show that the Poincaré lemma we proved elsewhere in the context of crystalline cohomology of higher level behaves well with regard to the Hodge filtration. This allows us to prove the Poincaré lemma for transversal crystals of level m. We interpret the de Rham complex in terms of what we call the Berthelot-Lieberman construction and show how the same construction can be used to study the conormal complex and invariant differential forms of higher level for a group scheme. Bringing together both instances of the construction, we show that crystalline extensions of transversal crystals by algebraic groups can be computed by reduction to the filtered de Rham complexes. Our theory does not ignore torsion and, unlike in the classical case (m = 0), not all invariant forms are closed. Therefore, close invariant differential forms of level m provide new invariants and we exhibit some examples as applications.


2019 ◽  
Vol 19 (09) ◽  
pp. 2050177
Author(s):  
Salih Celik

Introducing [Formula: see text]- and [Formula: see text]-deformations of [Formula: see text]-graded ([Formula: see text])- and ([Formula: see text])-spaces, denoted by [Formula: see text] and [Formula: see text], a two-parameter differential calculus, the quantum de Rham complex, on [Formula: see text] are explicitly constructed. It is shown that in contrast to the standard [Formula: see text]-deformation of [Formula: see text], the above complex is unique for [Formula: see text]. The quantum de Rham complex of [Formula: see text] is discussed via a contraction using standard one.


2014 ◽  
Vol 12 (01) ◽  
pp. 1550006 ◽  
Author(s):  
Alexei Kotov ◽  
Thomas Strobl

A Q-manifold is a graded manifold endowed with a vector field of degree 1 squaring to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of Q-manifolds. To each homotopy class of "gauge fields" (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. As any principal bundle yields canonically a Q-bundle, this construction generalizes Chern–Weil classes. Novel examples include cohomology classes that are locally de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate the framework to equivariant cohomology and Lecomte's characteristic classes of exact sequences of Lie algebras.


1997 ◽  
Vol 122 (2) ◽  
pp. 357-375 ◽  
Author(s):  
MAXIM BRAVERMAN ◽  
MICHAEL FARBER

We generalize the Novikov inequalities for 1-forms in two different directions: first, we allow non-isolated critical points (assuming that they are non-degenerate in the sense of R. Bott) and, secondly, we strengthen the inequalities by means of twisting by an arbitrary flat bundle. The proof uses Bismut's modification of the Witten deformation of the de Rham complex; it is based on an explicit estimate on the lower part of the spectrum of the corresponding Laplacian.In particular, we obtain a new analytic proof of the degenerate Morse inequalities of Bott.


2017 ◽  
Vol 153 (10) ◽  
pp. 2075-2146 ◽  
Author(s):  
Nicholas Switala

Let $A$ be a complete local ring with a coefficient field $k$ of characteristic zero, and let $Y$ be its spectrum. The de Rham homology and cohomology of $Y$ have been defined by R. Hartshorne using a choice of surjection $R\rightarrow A$ where $R$ is a complete regular local $k$-algebra: the resulting objects are independent of the chosen surjection. We prove that the Hodge–de Rham spectral sequences abutting to the de Rham homology and cohomology of $Y$, beginning with their $E_{2}$-terms, are independent of the chosen surjection (up to a degree shift in the homology case) and consist of finite-dimensional $k$-spaces. These $E_{2}$-terms therefore provide invariants of $A$ analogous to the Lyubeznik numbers. As part of our proofs we develop a theory of Matlis duality in relation to ${\mathcal{D}}$-modules that is of independent interest. Some of the highlights of this theory are that if $R$ is a complete regular local ring containing $k$ and ${\mathcal{D}}={\mathcal{D}}(R,k)$ is the ring of $k$-linear differential operators on $R$, then the Matlis dual $D(M)$ of any left ${\mathcal{D}}$-module $M$ can again be given a structure of left ${\mathcal{D}}$-module, and if $M$ is a holonomic ${\mathcal{D}}$-module, then the de Rham cohomology spaces of $D(M)$ are $k$-dual to those of $M$.


2019 ◽  
Vol 2020 (20) ◽  
pp. 6769-6814
Author(s):  
Pavol Ševera ◽  
Michal Širaň

Abstract We consider the problem of integration of $L_\infty $-algebroids (differential non-negatively graded manifolds) to $L_\infty $-groupoids. We first construct a “big” Kan simplicial manifold (Fréchet or Banach) whose points are solutions of a (generalized) Maurer–Cartan equation. The main analytic trick in our work is an integral transformation sending the solutions of the Maurer–Cartan equation to closed differential forms. Following the ideas of Ezra Getzler, we then impose a gauge condition that cuts out a finite-dimensional simplicial submanifold. This “smaller” simplicial manifold is (the nerve of) a local Lie $\ell $-groupoid. The gauge condition can be imposed only locally in the base of the $L_\infty $-algebroid; the resulting local $\ell $-groupoids glue up to a coherent homotopy, that is, we get a homotopy coherent diagram from the nerve of a good cover of the base to the (simplicial) category of local $\ell $-groupoids. Finally, we show that a $k$-symplectic differential non-negatively graded manifold integrates to a local $k$-symplectic Lie $\ell$-groupoid; globally, these assemble to form an $A_\infty$-functor. As a particular case for $k=2$, we obtain integration of Courant algebroids.


Sign in / Sign up

Export Citation Format

Share Document