scholarly journals A Conditional Fourier-Feynman Transform and Conditional Convolution Product with Change of Scales on a Function Space II

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Dong Hyun Cho

Using a simple formula for conditional expectations over continuous paths, we will evaluate conditional expectations which are types of analytic conditional Fourier-Feynman transforms and conditional convolution products of generalized cylinder functions and the functions in a Banach algebra which is the space of generalized Fourier transforms of the measures on the Borel class of L2[0,T]. We will then investigate their relationships. Particularly, we prove that the conditional transform of the conditional convolution product can be expressed by the product of the conditional transforms of each function. Finally we will establish change of scale formulas for the conditional transforms and the conditional convolution products. In these evaluation formulas and change of scale formulas, we use multivariate normal distributions so that the conditioning function does not contain present positions of the paths.

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Dong Hyun Cho ◽  
Suk Bong Park

In this paper we derive change of scale formulas for conditional analytic Fourier-Feynman transforms and conditional convolution products of the functions which are the products of generalized cylinder functions and the functions in a Banach algebra which is the space of generalized Fourier transforms of the complex Borel measures on L2[0,T] using two simple formulas for conditional expectations with a drift on an analogue of Wiener space. Then we prove that the conditional transform of the conditional convolution product can be expressed by the product of the conditional transforms of each function. Finally we establish various changes of scale formulas for the conditional transforms and the conditional convolution products.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Hyun Cho

Using simple formulas for generalized conditional Wiener integrals on a function space which is an analogue of Wiener space, we evaluate two generalized analytic conditional Wiener integrals of a generalized cylinder function which is useful in Feynman integration theories and quantum mechanics. We then establish various integral transforms over continuous paths with change of scales for the generalized analytic conditional Wiener integrals. In these evaluation formulas and integral transforms we use multivariate normal distributions so that the orthonormalization process of projection vectors which are needed to establish the conditional Wiener integrals can be removed in the existing change of scale transforms. Consequently the transforms in the present paper can be expressed in terms of the generalized cylinder function itself.


Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 13
Author(s):  
Atsuhide Mori

In the previous work, the author gave the following symplectic/contact geometric description of the Bayesian inference of normal means: The space H of normal distributions is an upper halfplane which admits two operations, namely, the convolution product and the normalized pointwise product of two probability density functions. There is a diffeomorphism F of H that interchanges these operations as well as sends any e-geodesic to an e-geodesic. The product of two copies of H carries positive and negative symplectic structures and a bi-contact hypersurface N. The graph of F is Lagrangian with respect to the negative symplectic structure. It is contained in the bi-contact hypersurface N. Further, it is preserved under a bi-contact Hamiltonian flow with respect to a single function. Then the restriction of the flow to the graph of F presents the inference of means. The author showed that this also works for the Student t-inference of smoothly moving means and enables us to consider the smoothness of data smoothing. In this presentation, the space of multivariate normal distributions is foliated by means of the Cholesky decomposition of the covariance matrix. This provides a pair of regular Poisson structures, and generalizes the above symplectic/contact description to the multivariate case. The most of the ideas presented here have been described at length in a later article of the author.


Sign in / Sign up

Export Citation Format

Share Document