scholarly journals Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hai Shi ◽  
Mingzhou Bai

With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment) high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

2013 ◽  
Vol 353-356 ◽  
pp. 1597-1603
Author(s):  
Shuang Lan Wu ◽  
Shi Hao Yang ◽  
Xue Wen Zhang

Difficulties of tunnel construction mainly appear in the entrance and exit stage, some adverse geological problems may occur. In terms of the tunnel at the Changsha-Kunming section of the Shanghai-Kunming passenger line, firstly, adverse geological phenomena at tunnel exits was described. Secondly, major factors leading to disasters were listed, including geology, hydrology and construction procedure. Combined with in-situ conditions, Finite Element Method (FEM) was used to analyze the instability mechanism of surrounding rock after the upper arch gate was excavated by three-bench seven-step exaction method. At last, through comparison between computed result and measuring data, several basic conclusions was obtained. It can make much sense to similar engineering.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Qian Yang ◽  
Zhaoling Wang

Nowadays, railway tunnel construction faces huge developments and opportunities, with a tendency for high speed and long distance. How to effectively apply the information in the construction process has been the focus of current research. According to the Xian-nvyan tunnel in Xicheng high-speed railway, our research was based on the geological forecast, selecting appropriate tunneling model parameters to establish the 3D calculation model. Through the numerical simulation of three tunnel excavation and support methods, we analyzed the displacement of surrounding rock and the plastic failure to select the construction method reasonably. Compared with the actual measured data, we judged the rationality of the selected scheme and model parameters, so as to provide design parameters which conform to the surrounding rock properties for the subsequent construction, thus optimizing the construction program and applying the concept of information-based construction in engineering actually.


2012 ◽  
Vol 132 (10) ◽  
pp. 673-676
Author(s):  
Takaharu TAKESHITA ◽  
Wataru KITAGAWA ◽  
Inami ASAI ◽  
Hidehiko NAKAZAWA ◽  
Yusuke FURUHASHI

Sign in / Sign up

Export Citation Format

Share Document