strength failure
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 42)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
CM Alencar ◽  
JRE Verbicário dos Santos ◽  
FFA Jassé ◽  
GO dos Santos ◽  
WG Escalante-Otárola ◽  
...  

SUMMARY Objective: To evaluate the effects of mechanical versus chemical cleaning protocols for cleaning the root dentin surface before cementation of fiberglass posts for their effect on the bond strength, failure mode, and dentinal penetration of the cementing agent using an etch-and-rinse adhesive system on dentin prepared to receive a fiberglass post. Methods: Forty roots of bovine teeth were endodontically treated and prepared for fiber post cementation. The specimens were randomized into 4 groups of 10: Control group (CO) - irrigation with 2.5% NaOCl; DW group- irrigation with distilled water; RB group - rotating brush for cleaning root canals, and CUI group - continuous ultrasonic irrigation. The fiberglass posts were cemented, and the specimens were immersed in distilled water for 6 months. A push-out test was performed on the cervical, middle, and apical thirds of the samples. Dentinal penetration of the cementing agent and the fracture pattern were evaluated by laser confocal microscopy. Statistical analysis was performed using analysis of variance (ANOVA) and post hoc Tukey tests (α=0.05). Results: The RB and CUI groups showed significantly higher bond strength values when compared to the Control and DW groups (p<0.05). In addition, in the control and DW groups, the apical third presented lower bond strength values when compared to middle and cervical thirds. Conclusion: While DW showed the highest incidence of adhesive type failure, CUI resulted in the highest dentinal penetration of the cementing agent (p<0.05). RB and CUI resulted in the highest bond strength between cementation system and root dentin. In addition, CUI favored greater dentinal penetration of fiberglass post cementing agent.


2021 ◽  
Vol 11 (16) ◽  
pp. 7735
Author(s):  
Mahmoud Mohamed ◽  
Mohd Ahmed ◽  
Javed Mallick

A soil nailing system is a proven effective and economic method used to stabilize earth slopes from the external (factors increasing the shear stress) and internal (factors decreasing material strength) failure causes. The laboratory models with scales of 1:10 are used to study the behavior of nailed soil slope with different soil and building foundation parameters. The models consist of Perspex strips as facing and steel bars as a nailing system to increase the stability of the soil slope. The models of sand beds are formed using an automatic sand raining system. Devices and instruments are installed to monitor the behavior of soil-nailed slope during and after construction. The effect of the soil type, soil slope angle, foundation width and position on the force mobilized in the nail, lateral displacement of the slope, settlement of the foundation and the earth pressure at the slope face, under and behind the soil mass at various foundation pressures, has been observed. It is found that the increase of soil density reduces both slopes facing displacement and building foundation settlements. The slope face displacement and footing settlement will increase with an increase in the width of the foundation and foundation position near the crest of the slope.


2021 ◽  
Vol 6 (SI4) ◽  
pp. 215-222
Author(s):  
Rohana Hassan ◽  
Tengku Anita Raja Husin ◽  
Nor Jihan Abd Malek ◽  
Mohd Sapuan Salit

This paper presents the experimental bending strength of steel dowelled splice glulam timber made of 'Mengkulang' species. Bending tests were conducted under a four-point bending load. Six (6) glulam specimens with 45mm x 90mm x 1800mm were loaded. Three (3) specimens were full beams as the control and three (3) splice beams dowelled with grade 8.8; 20 mm diameter steel rod. The embedded length of the steel dowel was 60mm and glued at 2mm thickness on both sides. Results show that the bending strength of the glulam control beam performed 74.18% higher than the splice beams with an increment of 58.26% displacement. Keywords: Structural material, flexural strength, failure mode, dowelled connection eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6iSI4.3029


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1291
Author(s):  
Xiaofeng Li ◽  
Zhixiang Yin

The stress environments of rock masses are complex. To explore the mechanical properties of sandstone under earthquake or disturbance loads, laboratory triaxial creep tests under different disturbance loads were conducted on sandstone from Fuxin, Liaoning Province, China. Given the disturbance load, a creep deformation pattern for sandstone was analyzed, and the influence of the disturbance load on the mechanical properties of rock was considered. Thus, a constitutive model of rock under creep disturbance load was established. The results show that (1) the creep curve can be divided into four stages: attenuation creep, steady creep, disturbance creep, and acceleration creep; the increment of disturbance creep varies for different disturbance loads and the larger the disturbance load, the larger the disturbance creep deformation; (2) with increasing disturbance loads, the long-term strength, failure time, and elastic modulus of sandstone decreases linearly, while the peak strain increases; and (3) considering the influence of the disturbance load and introducing an acceleration element to modify the Nishihara model, a constitutive model describing the whole deformation process of sandstone under creep disturbance load was established. The accuracy of the model was verified by test data and provides a theoretical basis for rock mass stability analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Van-Trung Pham ◽  
Te-Hua Fang

AbstractEvaluating the effect of porosity and ambient temperature on mechanical characteristics and thermal conductivity is vital for practical application and fundamental material property. Here we report that ambient temperature and porosity greatly influence fracture behavior and material properties. With the existence of the pore, the most significant stresses will be concentrated around the pore position during the uniaxial and biaxial processes, making fracture easier to occur than when tensing the perfect sheet. Ultimate strength and Young’s modulus degrade as porosity increases. The ultimate strength and Young's modulus in the zigzag direction is lower than the armchair one, proving that the borophene membrane has anisotropy characteristics. The deformation behavior of borophene sheets when stretching biaxial is more complicated and rough than that of uniaxial tension. In addition, the results show that the ultimate strength, failure strain, and Young’s modulus degrade with growing temperature. Besides the tensile test, this paper also uses the non-equilibrium molecular dynamics (NEMD) approach to investigate the effects of length size, porosity, and temperature on the thermal conductivity (κ) of borophene membranes. The result points out that κ increases as the length increases. As the ambient temperature increases, κ decreases. Interestingly, the more porosity increases, the more κ decreases. Moreover, the results also show that the borophene membrane is anisotropic in heat transfer.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2750
Author(s):  
Yilei Wang ◽  
Chunlan Jiang

Preforming pressure and the pressure holding time are important parameters of the molding process, which directly affect the mechanical properties of materials. In order to obtain the best molding parameters of Al-rich Al/PTFE/TiH2 composites, based on the quasi-static compression test, the influence of molding parameters on the mechanical properties of Al-rich Al/PTFE/TiH2 composites was analyzed, and the microstructure characteristics of Al-rich Al/PTFE/TiH2 specimens were analyzed by SEM. An X-ray diffractometer was used to analyze the phase of the residue after quasi-static compression experiment. The results show that: (1) With the increase in molding parameters (preforming pressure and the pressure holding time), the compressive strength, failure strain and toughness of Al-rich Al/PTFE/TiH2 specimens first increase and then decrease. The best molding process parameters of Al-rich Al/PTFE/TiH2 materials are preforming pressure 240 MPa and the pressure holding time 100 s. (2) For unsintering specimens, when the preforming pressure is less than 150 MPa, the porosity of the specimen increases slowly at first and then decreases. When the preforming pressure is greater than 150 MPa, the porosity of the specimen increases first and then decreases. When the pressure holding time is no more than 100 s, the porosity of the specimen decreases gradually. When the pressure holding time is more than 100 s, the porosity of the specimen increases first and then decreases. For sintered specimens, when the preforming pressure is less than 100 MPa, the porosity of the specimen decreases gradually. When the preforming pressure is greater than 100 MPa, the porosity of the specimen first increases and then decreases. With the increase in the pressure holding time, the porosity first increases and then decreases. For each preforming pressure specimen, compared with that before sintering, the porosity after sintering either decreases or increases. For each the pressure holding time specimen, the porosity increases after sintering compared with that before sintering. The microstructure of PTFE crystal inside the specimen is mainly planar PTFE crystal. The size and number of planar PTFE crystals are significantly affected by the molding parameters, which further affects the mechanical properties of Al-rich Al/PTFE/TiH2 specimens. When the preforming pressure is less than 100 MPa, the planar PTFE crystals are small and few, which results in the worst mechanical properties of the specimens. When the preforming pressure is more than 100 MPa and does not contain 240 Mpa, the planar PTFE crystals are small and there are more of them, which results in better mechanical properties of the specimens. When the preforming pressure is 240 MPa, the planar PTFE crystals are large and numerous, which results in the best mechanical properties of the specimen. When the pressure holding time is 100 s, the planar PTFE crystals are large and there are more of them, which results in the best mechanical properties of the specimen. (3) The reactivity of Al-rich Al/PTFE/TiH2 specimens with TiH2 the content of 10% under quasi-static compression is not significantly affected by the molding parameters.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xian Zhang ◽  
Gedong Jiang ◽  
Hao Zhang ◽  
Xialun Yun ◽  
Xuesong Mei

Purpose The purpose of this paper is to analyze the dependent competing failure reliability of harmonic drive (HD) with strength failure and degradation failure. Design/methodology/approach Based on life tests and stiffness degradation experiments, Wiener process is used to establish the accelerated performance degradation model of HD. Model parameter distribution is estimated by Bayesian inference and Markov Chain Monte Carlo (MCMC) and stiffness degradation failure samples are obtained by a three-step sampling method. Combined with strength failure samples of HD, copula function is used to describe the dependence between strength failure and stiffness degradation failure. Findings Strength failure occurred earlier than degradation failure under high level accelerated condition; degradation failure occurred earlier than strength failure under medium- or low-level accelerated condition. Gumbel copula is the optimum copula function for dependence modeling of strength failure and stiffness degradation failure. Dependent competing failure reliability of HD is larger than independent competing failure reliability. Originality/value The reliability evaluation method of dependent competing failure of HD with strength failure and degradation failure is first proposed. Performance degradation experiments during accelerated life test (ALT), step-down ALT and life test under rated condition are conducted for Wiener process based step-down accelerated performance degradation modeling.


2021 ◽  
Author(s):  
Nathalie Weiß-Borkowski ◽  
Junhe Lian ◽  
Anne Suse Schulz-Beenken ◽  
Thomas Tröster

Material characteristics such as yield strength, failure strain, strain hardening and strain rate sensitivity parameter are affected by loading speed. Therefore, the strain rate dependency of materials for plasticity and failure behavior is taken into account in crash simulations. Moreover, a possibility for consideration of instability at multi-axial dynamic loadings in crash simulations is the use of dynamic forming limit curves (FLC). In this study, the dynamic FLC of the press hardened automotive steel Usibor 1500 (AlSi coated 22MnB5) is investigated. The experimental results are obtained from a unique high-speed Nakajima setup. Two models are used for the numerical prediction. One is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the dynamic FLC. The comparison of the experimental and numerical results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document