scholarly journals Outer Synchronization of a Modified Quorum-Sensing Network via Adaptive Control

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jianbao Zhang ◽  
Wenyin Zhang ◽  
Denghua Zhang ◽  
Chengdong Yang ◽  
Kongwei Zhu ◽  
...  

Motivated by the quorum-sensing mechanism of bacteria, this paper modifies the network model by adding unknown parameters and noise disturbances and investigates the problem of outer synchronization via adaptive control. In case there exist three unknown parameters, updating laws are presented to identify the unknown parameters with help of Lyapunov stability theory, and the negative effects of noise disturbances are also compensated by designing adaptive controllers. In addition, we simplify the obtained conditions and carry out two succinct and utilitarian corollaries. Finally, numerical simulations are provided to show the validity of the obtained results.

2014 ◽  
Vol 28 (04) ◽  
pp. 1450013 ◽  
Author(s):  
PI LI ◽  
XING-YUAN WANG ◽  
NA WEI ◽  
SI-HUI JIANG ◽  
XIU-KUN WANG

This paper further investigates the adaptive full state hybrid projective synchronization (FSHPS) of hyper-chaotic systems — CYQY system with fully unknown parameters and perturbations. Based on the Lyapunov stability theory, adaptive controllers and updating laws of parameters can be designed for achieving the FSHPS of the CYQY hyper-chaotic systems with the same and different structures. Two groups numerical simulations are provided to verify the effectiveness of the proposed scheme.


Author(s):  
H. Najafizadegan ◽  
M. Khoeiniha ◽  
H. Zarabadipour

In this paper, we investigate the chaos anti-synchronization between two identical and different chaotic systems with fully unknown parameters via adaptive control. Based on the Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are designed such that the two different chaotic systems can be anti-synchronized asymptotically. Theoretical analysis and numerical simulations are shown to verify the results.


2013 ◽  
Vol 401-403 ◽  
pp. 1657-1660
Author(s):  
Bin Zhou ◽  
Xiang Wang ◽  
Yu Gao ◽  
Shao Cheng Qu

An adaptive controller with adaptive rate is presented to synchronize two chaos systems and to apply to secure communication. Based on Lyapunov stability theory, a sufficient condition and adaptive control parameters are obtained. Finally, the simulation with synchronization and secure communication is given to show the effectiveness of the proposed method. Keywords: adaptive; synchronization; observer; controller.


2008 ◽  
Vol 22 (08) ◽  
pp. 1015-1023 ◽  
Author(s):  
XINGYUAN WANG ◽  
XIANGJUN WU

This paper studies the adaptive synchronization and parameter identification of an uncertain hyperchaotic Chen system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. With this approach, the synchronization and parameter identification of the hyperchaotic Chen system with five uncertain parameters can be achieved simultaneously. Theoretical proof and numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.


2021 ◽  
Vol 54 (5) ◽  
pp. 789-795
Author(s):  
Yamina Haddadji ◽  
Mohamed Naguib Harmas ◽  
Abdlouahab Bouafia ◽  
Ziyad Bouchama

This research paper introduces an adaptive terminal synergetic nonlinear control. This control aims at synchronizing two hyperchaotic Zhou systems. Thus, the adaptive terminal synergetic control’s synthesis is applied to synchronize a hyperchaotic i.e., slave system with unknown parameters with another hyperchaotic i.e., master system. Accordingly, simulation results of each system in different initial conditions reveal significant convergence. Moreover, the findings proved stability and robustness of the suggested scheme using Lyapunov stability theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Wang ◽  
Yongguang Yu ◽  
Hu Wang

The robust synchronization of hyperchaotic systems with uncertainties and external disturbances is investigated. Based on the Lyapunov stability theory, the appropriate adaptive controllers and parameter update laws are designed to achieve the synchronization of uncertain hyperchaotic systems. The robust synchronization of two hyperchaotic Chen systems is taken as an example to verify the feasibility of the presented schemes. The size of the subcontroller gain’s influences on the convergence speed is discussed. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed synchronization schemes.


Author(s):  
Junwei Sun ◽  
Suxia Jiang ◽  
Guangzhao Cui ◽  
Yanfeng Wang

Based on combination synchronization of three chaotic systems and combination–combination synchronization of four chaotic systems, a novel scheme of dual combination synchronization is investigated for six chaotic systems in the paper. Using combined adaptive control and Lyapunov stability theory of chaotic systems, some sufficient conditions are attained to realize dual combination synchronization of six chaotic systems. The corresponding theoretical proofs and numerical simulations are presented to demonstrate the effectiveness and correctness of the dual combination synchronization. Due to the complexity of dual combination synchronization, it will be more secure and interesting to transmit and receive signals in application of communication.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qing Wei ◽  
Zuolei Wang

The antiphase and complete lag synchronization of hyperchaotic Lü systems with unknown parameters is investigated. Based on the Lyapunov stability theory, the sufficient conditions for achieving hybrid lag synchronization are derived. The optimized parameter observers are approached analytically via adaptive control approach. Numerical simulation results are presented to verify the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document