scholarly journals Enhancement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Porphyrin Precursor

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Erica Pinchon ◽  
Mary Arugula ◽  
Kapil Pant ◽  
Sameer Singhal

Recent studies have focused on tailoring the catalytic currents of multicopper oxidase (MCO) enzymes-based biocathodes to enhance oxygen reduction. Biocathodes modified with natural substrates specific for MCO enzymes demonstrated drastic improvement for oxygen reduction. Performance of 1-pyrenebutanoic acid, succinimidyl ester (PBSE), and 2,5-dimethyl-1-phenyl-1H-pyrrole-3-carbaldehyde (Di-Carb) oriented bilirubin oxidase (BOx) modified gas diffusion biocathode has been highly improved by incorporating hematin, a porphyrin precursor as electron transfer enhancement moiety. Hematin modified electrodes demonstrated direct electron transfer reaction of BOx exhibiting larger O2 reduction in current density in phosphate buffer solution (pH 7.0) without the need of a mediator. A remarkable improvement in the catalytic currents with 2.5-fold increase compared to non-hematin modified oriented BOx electrodes was achieved. Moreover, a mediatorless and compartmentless glucose/O2 biofuel cell based on DET-type bioelectrocatalysis via the BOx cathode and the glucose dehydrogenase (GDH) anode demonstrated peak power densities of 1 mW/cm2 at pH 7.0 with 100 mM glucose/10 mM NAD fuel. The maximum current density of 1.6 mA/cm2 and the maximum power density of 0.4 mW/cm2 were achieved at 300 mV with nonmodified BOx cathode, while 3.5 mA/cm2 and 1.1 mW/cm2 of current and power density were achieved with hematin modified cathode. The performance improved 2.4 times which attributes to the hematin acting as a natural precursor and activator for BOx activity enhancement.

Author(s):  
Yuchen Hui ◽  
Xiaoyan Ma ◽  
Rong Cai ◽  
Shelley D. Minteer

Abstract A stable three-dimensional glucose/oxygen enzymatic biofuel cell is fabricated based on the method of polymer encapsulation-based immobilization. And three-dimensional carbon felt is used as the substrate of the bio-electrode for increasing enzymatic loading density. Gold nanoparticles and multi-wall carbon nanotubes are employed to promote direct electron transfer and enhance conductivity and electron conduction rate of bio-electrodes. Glucose dehydrogenase and bilirubin oxidase are immobilized with tetrabutylammonium bromide (TBAB) modified Nafion, which enhances the stability of the bio-electrodes by the immobilization method. A membrane-free glucose/oxygen biofuel cell is assembled with a high open-circuit voltage of 0.85 V and a maximum power density of 21.9 ± 0.1 μW/cm2 in 0.1 M pH 7.0 phosphate buffer solution with 100 mM glucose and air saturation. And the biofuel cell shows high stability to the condition. After 60 days of periodic storage experiments, the performance of the enzymatic biofuel cell still maintained 90.3% of its electrochemical performance.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1056 ◽  
Author(s):  
Riccarda Antiochia ◽  
Diego Oyarzun ◽  
Julio Sánchez ◽  
Federico Tasca

One of the processes most studied in bioenergetic systems in recent years is the oxygen reduction reaction (ORR). An important challenge in bioelectrochemistry is to achieve this reaction under physiological conditions. In this study, we used bilirubin oxidase (BOD) from Myrothecium verrucaria, a subclass of multicopper oxidases (MCOs), to catalyse the ORR to water via four electrons in physiological conditions. The active site of BOD, the T2/T3 cluster, contains three Cu atoms classified as T2, T3α, and T3β depending on their spectroscopic characteristics. A fourth Cu atom; the T1 cluster acts as a relay of electrons to the T2/T3 cluster. Graphite electrodes were modified with BOD and the direct electron transfer (DET) to the enzyme, and the mediated electron transfer (MET) using an osmium polymer (OsP) as a redox mediator, were compared. As a result, an alternative resting (AR) form was observed in the catalytic cycle of BOD. In the absence and presence of the redox mediator, the AR direct reduction occurs through the trinuclear site (TNC) via T1, specifically activated at low potentials in which T2 and T3α of the TNC are reduced and T3β is oxidized. A comparative study between the DET and MET was conducted at various pH and temperatures, considering the influence of inhibitors like H2O2, F−, and Cl−. In the presence of H2O2 and F−, these bind to the TNC in a non-competitive reversible inhibition of O2. Instead; Cl− acts as a competitive inhibitor for the electron donor substrate and binds to the T1 site.


2011 ◽  
Vol 13 (3) ◽  
pp. 247-249 ◽  
Author(s):  
Gautam Gupta ◽  
Carolin Lau ◽  
Vijaykumar Rajendran ◽  
Frisia Colon ◽  
Brittany Branch ◽  
...  

Fuel Cells ◽  
2009 ◽  
pp. NA-NA ◽  
Author(s):  
V. Coman ◽  
R. Ludwig ◽  
W. Harreither ◽  
D. Haltrich ◽  
L. Gorton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document