redox mediator
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 155)

H-INDEX

54
(FIVE YEARS 10)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262492
Author(s):  
Khawlah Athamneh ◽  
Aysha Alneyadi ◽  
Aya Alsadik ◽  
Tuck Seng Wong ◽  
Syed Salman Ashraf

The accumulation of emerging pollutants in the environment remains a major concern as evidenced by the increasing number of reports citing their potential risk on environment and health. Hence, removal strategies of such pollutants remain an active area of investigation. One way through which emerging pollutants can be eliminated from the environment is by enzyme-mediated bioremediation. Enzyme-based degradation can be further enhanced via advanced protein engineering approaches. In the present study a sensitive and robust bioanalytical liquid chromatography-tandem mass spectrometry (LCMSMS)-based approach was used to investigate the ability of a fungal dye decolorizing peroxidase 4 (DyP4) and two of its evolved variants—that were previously shown to be H2O2 tolerant—to degrade a panel of 15 different emerging pollutants. Additionally, the role of a redox mediator was examined in these enzymatic degradation reactions. Our results show that three emerging pollutants (2-mercaptobenzothiazole (MBT), paracetamol, and furosemide) were efficiently degraded by DyP4. Addition of the redox mediator had a synergistic effect as it enabled complete degradation of three more emerging pollutants (methyl paraben, sulfamethoxazole and salicylic acid) and dramatically reduced the time needed for the complete degradation of MBT, paracetamol, and furosemide. Further investigation was carried out using pure MBT to study its degradation by DyP4. Five potential transformation products were generated during the enzymatic degradation of MBT, which were previously reported to be produced during different bioremediation approaches. The current study provides the first instance of the application of fungal DyP4 peroxidases in bioremediation of emerging pollutants.


Author(s):  
Yu-Hao Liu ◽  
Wei Chang ◽  
Jin Qu ◽  
Yan-Qiu Sui ◽  
Yasmine Abdelkrim ◽  
...  

2022 ◽  
Author(s):  
Emily Kerr ◽  
David J. Hayne ◽  
Lachlan C. Soulsby ◽  
Joseph C. Bawden ◽  
Steven J. Blom ◽  
...  

A water-soluble Ir(iii) complex is shown to enhance the ‘remote’ mechanism of the most widely used co-reactant ECL reaction of tris(2,2′-bipyridine)ruthenium(ii) with tripropylamine.


Author(s):  
Muhammad Mushtaq ◽  
Xianwei Guo ◽  
Zihe Zhang ◽  
Zhiyuan Lin ◽  
Xiaolong Li ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 102424
Author(s):  
Yair A. Del Ángel ◽  
Refugio B. García-Reyes ◽  
Lourdes B. Celis ◽  
Denisse Serrano-Palacios ◽  
Pablo Gortáres ◽  
...  

Author(s):  
Hanaa El-Desoky ◽  
Ashraf Koleeb ◽  
Roqaya Bassuiny ◽  
Tarek Mohamed

Abstract Enhancement of the properties of glucose oxidase (GOx) enzyme is still receiving attention due to its extensive applications. Eight different fungal strains were isolated from soil and orange fruit samples for inexpensive GOx production. Penicillium notatum F-158 (P. notatum) strain produced a remarkable amount of GOx. Its culture condition was optimized for optimum GOx production. GOx was purified and its activity, stability and kinetic parameters were studied. An effective biosensor {GCE/[MWCNTs–Fc–GOx(FAD)–NF]} based on layer by layer immbolization of MWCNTs, aritificial ferrocene (Fc) redox mediator, extracted P. notatum GOx enzyme and nafion polymer (NF) on glassy carbon electrode (GCE) surface was developed for glucose determination. Fc acts as an electron relay between enzyme and MWCNTs/GCE. The synergy of MWCNTs and Fc enhances the electrocatalytic action of Fc to the enzymatic oxidation of glucose. Low potential (+0.3V) of Fc applied in amperometric measurements avoids interference of the main electroactive substances present in the real plasma samples. This biosensor showed broad linear ranges {2.80×10-4 to 14.99×10-3 M} and low detection limit (8.68×10-6 M) for glucose determination. The achieved glucose concentrations in six plasma samples are consistent with normal values in human blood indicating that such biosensor could be used clinically.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7498
Author(s):  
John Ostrander ◽  
Reza Younesi ◽  
Ronnie Mogensen

This work presents Prussian blue solid boosters for use in high voltage redox-mediated flow batteries (RMFB) based on non-aqueous electrolytes. The system consisted of sodium iodide as a redox mediator in an acetonitrile catholyte containing solid Prussian blue powder. The combination enabled the solid booster utilization in the proposed systems to reach as high as 66 mAh g−1 for hydrated Prussian blue and 110 mAh g−1 for anhydrous rhombohedral Prussian blue in cells with an average potential of about 3 V (vs. Na+/Na). Though the boosted system suffers from capacity fading, it opens up possibilities to develop non-aqueous RMFB with low-cost materials.


Sign in / Sign up

Export Citation Format

Share Document