scholarly journals Colonization and Spore Richness of Arbuscular Mycorrhizal Fungi in Araucaria Nursery Seedlings in Curitiba, Brazil

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Carlos Vilcatoma-Medina ◽  
Glaciela Kaschuk ◽  
Flávio Zanette

Araucaria or Paraná pine [Araucaria angustifolia (Bertol.) Kuntze, 1898] is an endangered timber tree species of Atlantic Forest that naturally forms symbiosis with arbuscular mycorrhizal fungi (AMF). The objective of this experiment was to evaluate AMF colonization and spore AMF richness in araucaria seedlings produced in nursery at the metropolitan region of Curitiba, Brazil, with the interest of identifying a taxonomical AMF group. For that, soil and fine roots of 6-month-, 1-year-, 2-year-, 3-year-, and 5-year-old araucaria seedlings were sampled and evaluated. Evaluations indicated that araucaria seedlings were well colonized by AMF (with rates varying from almost 50 to over 85%) and produced an abundant number of mycorrhizal spores (from 344 to 676 spores per seedling). Samples contained spores of the species Acaulospora scrobiculata, Dentiscutata heterogama, and Glomus spinuliferum and unidentified species of genera Gigaspora and Glomus. The Glomus genus was the most abundant kind of AMF spores found under nursery conditions. Therefore, the experiment evidenced that Glomus is a promising genus candidate for being used as AMF inoculant in production of araucaria seedlings.

2004 ◽  
Vol 4 (2) ◽  
pp. 1-15 ◽  
Author(s):  
Marcos P.M. Aidar ◽  
Rosilaine Carrenho ◽  
Carlos A. Joly

Mycorrhizal colonization was assessed in roots of trees within an Atlantic Forest chronosequence, located in the southeastern of São Paulo State, Brazil, inside Tourist State Park of the High Ribeira Valley (PETAR). The phytosociological survey was carried out in three adjacent areas, all on calcareous soil, which correspond to different time intervals during which they have been left abandoned following a slash-and-burn agricultural perturbation. Early Phase (EP) with 15 years; Mid Phase (MP) with 25 years; and Late Phase (LP) with more than 36 years without clear-cut. The inventory indicated a continuum of tree species substitution, which is dominated by species of Leguminosae, especially Piptadenia gonoacantha (Mart.) J.F. Macbr. (Mimosoideae) in the earlier successional phases. Mycorrhizal colonization, estimated by the occurrence of the mycorrhizal structures in the tree species roots, diminished during the season with less rain (winter), and showed no significant differences between successional phases in the wet season (summer). Rather, the mycorrhizal colonization was correlated with occurrence of the tree’s successional status: being positively correlated with occurrence of pioneer species, and negatively correlated with late secondary species. Mycorrhizal colonization was also correlated negatively with soil organic matter and base saturation. Twenty five species of arbuscular mycorrhizal fungi belonging to four genera were identified. Six species were only identified to generic level. The species Glomus etunicatum Becker & Gerd. represented 10% of the total number of spores and occurred in all phases and seasons, while the genus Glomus represented 57% of the total of spores found in the rhizosphere. The diversity indices evaluated for the mycohrriza community were: H’ = 2.3, J’ = 0.97 and R = 4.12. These results are a contribution to the knowledge of The Atlantic Forest biodiversity and may have implications to support programs regarding rehabilitation of degraded vegetation in one of the World’s most threatened Biomes.


2005 ◽  
Vol 19 (3) ◽  
pp. 633-637 ◽  
Author(s):  
Bruno Tomio Goto ◽  
Leonor Costa Maia

The arbuscular mycorrhizal fungi (AMF) are widely distributed in terrestrial ecossystems; however the sporocarpic species are less documented on AMF surveys. Five of these species were found in natural areas of Atlantic Forest and in agricultural ecosystems of Northeast Brazil: Glomus glomerulatum, G. sinuosum, G. coremioides, G. fuegianum and G. taiwanensis, with the last one being registered for the first time in Brazilian soils.


2021 ◽  
Vol 35 (2) ◽  
pp. 269-275
Author(s):  
Camila Abarca ◽  
Marcelo Daniel Barrera ◽  
Marta Cabello ◽  
Fabricio Valdés ◽  
María Silvana Velázquez

2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


2015 ◽  
Vol 71 (1) ◽  
pp. 164-177 ◽  
Author(s):  
Joice Andrade Bonfim ◽  
Rafael Leandro Figueiredo Vasconcellos ◽  
Thiago Gumiere ◽  
Denise de Lourdes Colombo Mescolotti ◽  
Fritz Oehl ◽  
...  

2015 ◽  
Vol 24 (9) ◽  
pp. 2213-2226 ◽  
Author(s):  
Danielle Karla Alves da Silva ◽  
Flávia Paiva Coutinho ◽  
Indra Elena Costa Escobar ◽  
Renata Gomes de Souza ◽  
Fritz Oehl ◽  
...  

Afrika Focus ◽  
2013 ◽  
Vol 26 (2) ◽  
pp. 111-131
Author(s):  
Tadesse Chanie Sewnet ◽  
Fassil Assefa Tuju

In a first step to understand the interactions between Colfea arabica L. trees and mycorrhizae in Ethiopia, an investigation of the current mycorrhizal colonization status of roots was undertaken. We sampled 14 shade tree species occurring in coffee populations in Bonga forest, Ethiopia. Milletia ferruginea, Schefflera abyssinica, Croton macrostachyus, Ficus vasta, F. sur, Albizia gummifera, Olea capensis, Cordia africana, Ehretia abyssinica, Pouteria adolfi-friederici, Pavetta oliveriana, Prunus africana, Phoenix reclinata and Polyscias fulva. Coffee trees sampled under each shade tree were all shown to be colonized by arbuscular mycorrhizal fungi (AM fungi). Four genera and 9 different species of AM fungi were found in the soils. Glomus (Sp1, Sp2, & Sp3 & Sp4), Scutellospora (Sp1 & Sp2) and Gigaspora (Sp1 & Sp2) were found under all 14 shade tree species, whereas Acaulospora (Sp1) occurred only in slightly acidic soils, within a pH range of 4.93-5.75. Generally, roots of the coffee trees were colonized by arbuscules to a greater degree than those of their shade trees, the arbuscular colonization percentage (AC%) of the former being higher than the latter (significant difference at 0.05 level). Though differences were not statistically significant, the overall hyphal colonization percentage (HC%) and mycorrhizal hyphal colonization percentage (MHC%) were shown to be slightly higher under coffee trees than under their shade trees. However, the differences were statistically significant at 0.05 level in the case of HC% values of coffee trees under Pouteria adolf-friederici and MHC% under Cordia africana. Spore density and all types of proportional root colonization parameters (HC%, MHC%, AC% and vesicular colonization percentage, VC%) for both coffee and shade trees were negatively and significantly correlated with organic soil carbon, total N, available P, EC and Zn. Correlation between arbuscular colonization for coffee (AC%) and organic carbon was not significantly positive at a 0.05 level. Incidence of specific spore morphotypes was also correlated with physical and chemical soil properties. Results indicate that AM fungi could potentially be important in aforestation and help to promote coffee production activities in Ethiopia providing an alternative to expensive chemical fertilizer use, and would offer management methods that take advantage of natural systems dynamics that could potentially preserve and enhance coffee production.


Sign in / Sign up

Export Citation Format

Share Document