scholarly journals An Improved Multiobjective Quantum-Behaved Particle Swarm Optimization Based on Double Search Strategy and Circular Transposon Mechanism

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Fei Han ◽  
Yu-Wen-Tian Sun ◽  
Qing-Hua Ling

Although multiobjective particle swarm optimization (MOPSO) has good performance in solving multiobjective optimization problems, how to obtain more accurate solutions as well as improve the distribution of the solutions set is still a challenge. In this paper, to improve the convergence performance of MOPSO, an improved multiobjective quantum-behaved particle swarm optimization based on double search strategy and circular transposon mechanism (MOQPSO-DSCT) is proposed. On one hand, to solve the problem of the dramatic diversity reduction of the solutions set in later iterations due to the single search pattern used in quantum-behaved particle swarm optimization (QPSO), the double search strategy is proposed in MOQPSO-DSCT. The particles mainly learn from their personal best position in earlier iterations and then the particles mainly learn from the global best position in later iterations to balance the exploration and exploitation ability of the swarm. Moreover, to alleviate the problem of the swarm converging to local minima during the local search, an improved attractor construction mechanism based on opposition-based learning is introduced to further search a better position locally as a new attractor for each particle. On the other hand, to improve the accuracy of the solutions set, the circular transposon mechanism is introduced into the external archive to improve the communication ability of the particles, which could guide the population toward the true Pareto front (PF). The proposed algorithm could generate a set of more accurate and well-distributed solutions compared to the traditional MOPSO. Finally, the experiments on a set of benchmark test functions have verified that the proposed algorithm has better convergence performance than some state-of-the-art multiobjective optimization algorithms.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Huan Zhang ◽  
Rennong Yang ◽  
Changyue Sun ◽  
Haiyan Han

For the problem of multiaircraft cooperative suppression interference array (MACSIA) against the enemy air defense radar network in electronic warfare mission planning, firstly, the concept of route planning security zone is proposed and the solution to get the minimum width of security zone based on mathematical morphology is put forward. Secondly, the minimum width of security zone and the sum of the distance between each jamming aircraft and the center of radar network are regarded as objective function, and the multiobjective optimization model of MACSIA is built, and then an improved multiobjective particle swarm optimization algorithm is used to solve the model. The decomposition mechanism is adopted and the proportional distribution is used to maintain diversity of the new found nondominated solutions. Finally, the Pareto optimal solutions are analyzed by simulation, and the optimal MACSIA schemes of each jamming aircraft suppression against the enemy air defense radar network are obtained and verify that the built multiobjective optimization model is corrected. It also shows that the improved multiobjective particle swarm optimization algorithm for solving the problem of MACSIA is feasible and effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Wusi Yang ◽  
Li Chen ◽  
Yi Wang ◽  
Maosheng Zhang

The recently proposed multiobjective particle swarm optimization algorithm based on competition mechanism algorithm cannot effectively deal with many-objective optimization problems, which is characterized by relatively poor convergence and diversity, and long computing runtime. In this paper, a novel multi/many-objective particle swarm optimization algorithm based on competition mechanism is proposed, which maintains population diversity by the maximum and minimum angle between ordinary and extreme individuals. And the recently proposed θ-dominance is adopted to further enhance the performance of the algorithm. The proposed algorithm is evaluated on the standard benchmark problems DTLZ, WFG, and UF1-9 and compared with the four recently proposed multiobjective particle swarm optimization algorithms and four state-of-the-art many-objective evolutionary optimization algorithms. The experimental results indicate that the proposed algorithm has better convergence and diversity, and its performance is superior to other comparative algorithms on most test instances.


2010 ◽  
Vol 20-23 ◽  
pp. 64-69 ◽  
Author(s):  
Yong Quan Zhou ◽  
Lingzi Liu

In this paper, a novel chaotic cultural-based particle swarm optimization algorithm (CCPSO) is proposed for constrained optimization problems by employing cultural-based particle swarm optimization (CPSO) algorithm and the notion of chaotic local search strategy. In the CCPSO, the shortcoming of cultural-based particle swarm optimization (CPSO) that it is easy to trap into local minimum be overcome, the chaotic local search strategy is introduced in the influence functions of cultural algorithm. Simulation results based on well-known constrained engineering design problems demonstrate the effectiveness, efficiency and robustness on initial populations of the proposed method.


2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Ahmad Faiz Ab Rahman ◽  
Hazlina Selamat ◽  
Fatimah Sham Ismail ◽  
Nurulaqilla Khamis

This paper discusses the development of a building energy optimization algorithm by using multiobjective Particle Swarm Optimization for a building. Particle Swarm Optimization is a well known algorithm that is proven to be effective in many complex optimization problems. Multiobjective PSO is developed by utilizing non-dominated sorting algorithm in tandem with majority-based selection algorithm. The optimizer is written by using MATLAB alongside its GUI interface. Results are then analyzed by using the Binh and Korn benchmark test and natural distance performance metrics. From the results, the optimizer is capable to minimize up to 42 percent of energy consumption and lowering the electricity bills up to 43 percent, while still maintaining comfort at more than 95 percent as well. With this, building owner can save energy with a low-cost and simple solution. 


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Hongli Yu ◽  
Yuelin Gao ◽  
Jincheng Wang

In order to solve the shortcomings of particle swarm optimization (PSO) in solving multiobjective optimization problems, an improved multiobjective particle swarm optimization (IMOPSO) algorithm is proposed. In this study, the competitive strategy was introduced into the construction process of Pareto external archives to speed up the search process of nondominated solutions, thereby increasing the speed of the establishment of Pareto external archives. In addition, the descending order of crowding distance method is used to limit the size of external archives and dynamically adjust particle parameters; in order to solve the problem of insufficient population diversity in the later stage of algorithm iteration, time-varying Gaussian mutation strategy is used to mutate the particles in external archives to improve diversity. The simulation experiment results show that the improved algorithm has better convergence and stability than the other compared algorithms.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 827 ◽  
Author(s):  
E. J. Solteiro Pires ◽  
J. A. Tenreiro Machado ◽  
P. B. de Moura Oliveira

Particle swarm optimization (PSO) is a search algorithm inspired by the collective behavior of flocking birds and fishes. This algorithm is widely adopted for solving optimization problems involving one objective. The evaluation of the PSO progress is usually measured by the fitness of the best particle and the average fitness of the particles. When several objectives are considered, the PSO may incorporate distinct strategies to preserve nondominated solutions along the iterations. The performance of the multiobjective PSO (MOPSO) is usually evaluated by considering the resulting swarm at the end of the algorithm. In this paper, two indices based on the Shannon entropy are presented, to study the swarm dynamic evolution during the MOPSO execution. The results show that both indices are useful for analyzing the diversity and convergence of multiobjective algorithms.


2018 ◽  
Vol 232 ◽  
pp. 03039
Author(s):  
Taowei Chen ◽  
Yiming Yu ◽  
Kun Zhao

Particle swarm optimization(PSO) algorithm has been widely applied in solving multi-objective optimization problems(MOPs) since it was proposed. However, PSO algorithms updated the velocity of each particle using a single search strategy, which may be difficult to obtain approximate Pareto front for complex MOPs. In this paper, inspired by the theory of P system, a multi-objective particle swarm optimization (PSO) algorithm based on the framework of membrane system(PMOPSO) is proposed to solve MOPs. According to the hierarchical structure, objects and rules of P system, the PSO approach is used in elementary membranes to execute multiple search strategy. And non-dominated sorting and crowding distance is used in skin membrane for improving speed of convergence and maintaining population diversity by evolutionary rules. Compared with other multi-objective optimization algorithm including MOPSO, dMOPSO, SMPSO, MMOPSO, MOEA/D, SPEA2, PESA2, NSGAII on a benchmark series function, the experimental results indicate that the proposed algorithm is not only feasible and effective but also have a better convergence to true Pareto front.


Sign in / Sign up

Export Citation Format

Share Document