scholarly journals Threshold Dynamics of an SIR Model with Nonlinear Incidence Rate and Age-Dependent Susceptibility

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Junyuan Yang ◽  
Xiaoyan Wang

We propose an SIR epidemic model with different susceptibilities and nonlinear incidence rate. First, we obtain the existence and uniqueness of the system and the regularity of the solution semiflow based on some assumptions for the parameters. Then, we calculate the basic reproduction number, which is the spectral radius of the next-generation operator. Second, we investigate the existence and local stability of the steady states. Finally, we construct suitable Lyapunov functionals to strictly prove the global stability of the system, which are determined by the basic reproduction number ℛ0 and some assumptions for the incidence rate.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Ávila-Vales ◽  
Erika Rivero-Esquivel ◽  
Gerardo Emilio García-Almeida

We consider a family of periodic SEIRS epidemic models with a fairly general incidence rate of the form Sf(I), and it is shown that the basic reproduction number determines the global dynamics of the models and it is a threshold parameter for persistence of disease. Numerical simulations are performed using a nonlinear incidence rate to estimate the basic reproduction number and illustrate our analytical findings.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750064 ◽  
Author(s):  
Junyuan Yang ◽  
Zhen Jin ◽  
Lin Wang ◽  
Fei Xu

In this paper, nonlinear incidence rate is incorporated into an age-of-infection SVIR epidemiological model. By the method of Lyapunov functionals, it is shown that the basic reproduction number [Formula: see text] of the model is a threshold parameter in the sense that if [Formula: see text], the disease dies out, while if [Formula: see text], the disease persists.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jihad Adnani ◽  
Khalid Hattaf ◽  
Noura Yousfi

We investigate a stochastic SIR epidemic model with specific nonlinear incidence rate. The stochastic model is derived from the deterministic epidemic model by introducing random perturbations around the endemic equilibrium state. The effect of random perturbations on the stability behavior of endemic equilibrium is discussed. Finally, numerical simulations are presented to illustrate our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document