scholarly journals NOESIS: A Framework for Complex Network Data Analysis

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Víctor Martínez ◽  
Fernando Berzal ◽  
Juan-Carlos Cubero

Network data mining has attracted a lot of attention since a large number of real-world problems have to deal with complex network data. In this paper, we present NOESIS, an open-source framework for network-based data mining. NOESIS features a large number of techniques and methods for the analysis of structural network properties, network visualization, community detection, link scoring, and link prediction. The proposed framework has been designed following solid design principles and exploits parallel computing using structured parallel programming. NOESIS also provides a stand-alone graphical user interface allowing the use of advanced software analysis techniques to users without prior programming experience. This framework is available under a BSD open-source software license.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0203725 ◽  
Author(s):  
Björn Harink ◽  
Huy Nguyen ◽  
Kurt Thorn ◽  
Polly Fordyce

2003 ◽  
Vol 2003 (01) ◽  
pp. 0102
Author(s):  
Terry Bollinger

This report documents the results of a study by The MITRE Corporation on the use of free and open-source software (FOSS) in the U.S. Department of Defense (DoD). FOSS gives users the right to run, copy, distribute, study, change, and improve it as they see fit, without asking permission or making fiscal payments to any external group or person. The study showed that FOSS provides substantial benefits to DoD security, infrastructure support, software development, and research. Given the openness of its source code, the finding that FOSS profoundly benefits security was both counterintuitive and instructive. Banning FOSS in DoD would remove access to exceptionally well-verified infrastructure components such as OpenBSD and robust network and software analysis tools needed to detect and respond to cyber-attacks. Finally, losing the hands-on source code accessibility of FOSS source code would reduce DoD’s ability to respond rapidly to cyberattacks. In short, banning FOSS would have immediate, broad, and strongly negative impacts on the DoD’s ability to defend the U.S. against cyberattacks. For infrastructure support, the deep historical ties between FOSS and the emergence of the Internet mean that removing FOSS applications would strongly negatively impact the DoD’s ability to support web and Internet-based applications. Software development would be hit especially hard due to many leading-edge and broadly used tools being FOSS. Finally, the loss of access to low-cost data processing tools and the inability to share results in the more potent form of executable FOSS software would seriously and negatively impact nearly all forms of scientific and data-driven research.


Sign in / Sign up

Export Citation Format

Share Document