scholarly journals Automatic Evaluation of Internal Combustion Engine Noise Based on an Auditory Model

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kai Liang ◽  
Haijun Zhao

To improve the accuracy and efficiency of the objective evaluation of noise quality from internal combustion engines, an automatic noise quality classification model was constructed by introducing an auditory model-based acoustic spectrum analysis method and a convolutional neural network (CNN) model. A band-pass filter was also designed in the model to automatically extract the features of the noise samples, which were later used as input data. The adaptive moment estimation (Adam) algorithm was used to optimize the weights of each layer in the network, and the model was used to evaluate sound quality. To evaluate the predictive performance of the CNN model based on the auditory input, a back propagation (BP) sound quality evaluation model based on psychoacoustic parameters was constructed and used as a control. When processing the label values of the samples, the correlation between the psychoacoustic parameters of the objective evaluation and evaluation scores was analyzed. Four psychoacoustic parameters with the greatest correlation with subjective evaluation results were selected as the input values of the BP model. The results showed that the sound quality evaluation model based on the CNN could predict the sound quality of internal combustion engines more accurately, and the input evaluation score based on the auditory spectrum in the CNN classification model was more accurate than the short-time average energy input evaluation score based on the time domain.

2019 ◽  
Vol 11 (10) ◽  
pp. 204 ◽  
Author(s):  
Dogan ◽  
Haddad ◽  
Ekmekcioglu ◽  
Kondoz

When it comes to evaluating perceptual quality of digital media for overall quality of experience assessment in immersive video applications, typically two main approaches stand out: Subjective and objective quality evaluation. On one hand, subjective quality evaluation offers the best representation of perceived video quality assessed by the real viewers. On the other hand, it consumes a significant amount of time and effort, due to the involvement of real users with lengthy and laborious assessment procedures. Thus, it is essential that an objective quality evaluation model is developed. The speed-up advantage offered by an objective quality evaluation model, which can predict the quality of rendered virtual views based on the depth maps used in the rendering process, allows for faster quality assessments for immersive video applications. This is particularly important given the lack of a suitable reference or ground truth for comparing the available depth maps, especially when live content services are offered in those applications. This paper presents a no-reference depth map quality evaluation model based on a proposed depth map edge confidence measurement technique to assist with accurately estimating the quality of rendered (virtual) views in immersive multi-view video content. The model is applied for depth image-based rendering in multi-view video format, providing comparable evaluation results to those existing in the literature, and often exceeding their performance.


MTZ worldwide ◽  
2015 ◽  
Vol 76 (4) ◽  
pp. 24-29 ◽  
Author(s):  
Stefan Hoffmann ◽  
Michael Schrott ◽  
Thorsten Huber ◽  
Thomas Kruse

Sign in / Sign up

Export Citation Format

Share Document