scholarly journals Multi-Information Flow CNN and Attribute-Aided Reranking for Person Reidentification

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haifeng Sang ◽  
Chuanzheng Wang ◽  
Dakuo He ◽  
Qing Liu

This paper presents a multi-information flow convolutional neural network (MiF-CNN) model for person reidentification (re-id). It contains several specific multilayer convolutional structures, where the input and output of a convolutional layer are concatenated together on channel dimension. With this idea, layers of model can go deeper and feature maps can be reused by each subsequent layer. Inspired by an image caption, a person attribute recognition network is proposed based on long-short-term memory network and attention mechanism. By fusing identification results of MiF-CNN and attribute recognition, this paper introduces the attribute-aided reranking algorithm to improve the accuracy of person re-id further. Experiments on VIPeR, CUHK01, and Market1501 datasets verify the proposed MiF-CNN can be trained sufficiently with small-scale datasets and obtain outstanding accuracy of person re-id. Contrast experiments also confirm the availability of the attribute-assisted reranking algorithm.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3433 ◽  
Author(s):  
Seon Kim ◽  
Gyul Lee ◽  
Gu-Young Kwon ◽  
Do-In Kim ◽  
Yong-June Shin

Load forecasting is a key issue for efficient real-time energy management in smart grids. To control the load using demand side management accurately, load forecasting should be predicted in the short term. With the advent of advanced measuring infrastructure, it is possible to measure energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale energy groups, such as individual buildings. This paper presents applications of deep learning using feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed into a weekly load profile and then decomposed into intrinsic mode functions by variational mode decomposition to capture periodic features. Then, a long short-term memory network model is trained by three-dimensional input data with three-step regularization. Finally, the prediction results of all intrinsic mode functions are combined with advanced measuring infrastructure measured in the previous steps to determine an aggregated output for load forecasting. The results are validated by applications to real-world data from smart buildings, and the performance of the proposed approach is assessed by comparing the predicted results with those of conventional methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory network-based feature decomposition.


2021 ◽  
Vol 263 (2) ◽  
pp. 4355-4360
Author(s):  
Mitsunori Mizumachi ◽  
Ryotarou Oka

Acoustic beamforming with a microphone array enables spatial filtering in a wide frequency range. It is a challenging issue to sharpen the main-lobe in the lower frequency region with a small-scale microphone array, of which the number and spacing of microphones are small. A neural network-based non-linear beamformer achieves a breakthrough in sharpening the main-lobe. The non-linear beamforming works well for the narrowband signals but is weak in wideband beamforming. The non-linear beamforming with the long short-term memory is proposed to deal with wideband speech signals. The long short-term memory network is trained in the recurrent neural network architecture with the sequence of audio data such as speech signals. The performance of the proposed beamformer is confirmed using a small-scale 8-ch MEMS microphone array, where eight microphones are linearly arranged with the neighboring spacing of 10 mm, under a real environment. The beam-pattern of the proposed non-linear beamformer succeeds in sharpening the main-lobe although the linear delay-and-sum beamformer could not achieve frequency selectivity. The feasibility of the proposed beamformer is also confirmed in speech enhancement.


2021 ◽  
Vol 9 (6) ◽  
pp. 651
Author(s):  
Yan Yan ◽  
Hongyan Xing

In order for the detection ability of floating small targets in sea clutter to be improved, on the basis of the complete ensemble empirical mode decomposition (CEEMD) algorithm, the high-frequency parts and low-frequency parts are determined by the energy proportion of the intrinsic mode function (IMF); the high-frequency part is denoised by wavelet packet transform (WPT), whereas the denoised high-frequency IMFs and low-frequency IMFs reconstruct the pure sea clutter signal together. According to the chaotic characteristics of sea clutter, we proposed an adaptive training timesteps strategy. The training timesteps of network were determined by the width of embedded window, and the chaotic long short-term memory network detection was designed. The sea clutter signals after denoising were predicted by chaotic long short-term memory (LSTM) network, and small target signals were detected from the prediction errors. The experimental results showed that the CEEMD-WPT algorithm was consistent with the target distribution characteristics of sea clutter, and the denoising performance was improved by 33.6% on average. The proposed chaotic long- and short-term memory network, which determines the training step length according to the width of embedded window, is a new detection method that can accurately detect small targets submerged in the background of sea clutter.


Sign in / Sign up

Export Citation Format

Share Document