scholarly journals Modified Mechanistic Model Based on Gaussian Process Adjusting Technique for Cutting Force Prediction in Micro-End Milling

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xiaoping Liao ◽  
Zhenkun Zhang ◽  
Kai Chen ◽  
Kang Li ◽  
Junyan Ma ◽  
...  

Micro-end milling is in common use of machining micro- and mesoscale products and is superior to other micro-machining processes in the manufacture of complex structures. Cutting force is the most direct factor reflecting the processing state, the change of which is related to the workpiece surface quality, tool wear and machine vibration, and so on, which indicates that it is important to analyze and predict cutting forces during machining process. In such problems, mechanistic models are frequently used for predicting machining forces and studying the effects of various process variables. However, these mechanistic models are derived based on various engineering assumptions and approximations (such as the slip-line field theory). As a result, the mechanistic models are generally less accurate. To accurately predict cutting forces, the paper proposes two modified mechanistic models, modified mechanistic models I and II. The modified mechanistic models are the integration of mathematical model based on Gaussian process (GP) adjustment model and mechanical model. Two different models have been validated on micro-end-milling experimental measurement. The mean absolute percentage errors of models I and II are 7.76% and 6.73%, respectively, while the original mechanistic model’s is 15.14%. It is obvious that the modified models are in better agreement with experiment. And model II performs better between the two modified mechanistic models.

Author(s):  
Rusnaldy ◽  
Tae Jo Ko ◽  
Hee Sool Kim

There is a lack of fundamental understanding of micro-end-milling of silicon wafer, specifically basic understanding of material removal mechanism, cutting forces and machined surface integrity in micro scale machining of silicon. It is necessary to determine the forces generated during the cutting operation due to chip thickness along with tool geometry, tool material properties and workpiece properties because cutting forces will provide vital information for the design, modeling and control of the machining process. In this study, cutting force data can be used to determine cutting regime machining of silicon wafer.


Author(s):  
Han Ul Lee ◽  
Dong-Woo Cho ◽  
Kornel F. Ehmann

Complex three-dimensional miniature components are needed in a wide range of industrial applications from aerospace to biomedicine. Such products can be effectively produced by micro-end-milling processes that are capable of accurately producing high aspect ratio features and parts. This paper presents a mechanistic cutting force model for the precise prediction of the cutting forces in micro-end-milling under various cutting conditions. In order to account for the actual physical phenomena at the edge of the tool, the components of the cutting force vector are determined based on the newly introduced concept of the partial effective rake angle. The proposed model also uses instantaneous cutting force coefficients that are independent of the end-milling cutting conditions. These cutting force coefficients, determined from measured cutting forces, reflect the influence of the majority of cutting mechanisms involved in micro-end-milling including the minimum chip-thickness effect. The comparison of the predicted and measured cutting forces has shown that the proposed method provides very accurate results.


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


Author(s):  
Bryan Javorek ◽  
Barry K. Fussell ◽  
Robert B. Jerard

Changes in cutting forces during a milling operation can be associated with tool wear and breakage. Accurate monitoring of these cutting forces is an important step towards the automation of the machining process. However, direct force sensors, such as dynamometers, are not practical for industry application due to high costs, unwanted compliance, and workspace limitations. This paper describes a method in which power sensors on the feed and spindle motors are used to generate coefficients for a cutting force model. The resulting model accurately predicts the X and Y cutting forces observed in several simple end-milling tests, and should be capable of estimating both the peak and average force for a given cut geometry. In this work, a dynamometer is used to calibrate the feed drive power sensor and to measure experimental cutting forces for verification of the cutting force model. Measurement of the average x-axis cutting forces is currently presented as an off-line procedure performed on a sacrificial block of material. The potential development of a continuous, real-time force monitoring system is discussed.


2011 ◽  
Vol 223 ◽  
pp. 85-92 ◽  
Author(s):  
Balázs Tukora ◽  
Tibor Szalay

In this paper a new method for instantaneous cutting force prediction is presented, in case of sculptured surface milling. The method is executed in a highly parallel manner by the general purpose graphics processing unit (GPGPU). As opposed to the accustomed way, the geometric information of the work piece-cutter touching area is gained directly from the multi-dexel representation of the work-piece, which lets us compute the forces in real-time. Furthermore a new procedure is introduced for the determination of the cutting force coefficients on the basis of measured instantaneous or average orthogonal cutting forces. This method can determine the shear and ploughing coefficients even while the cutting geometry is continuously altering, e.g. in the course of multi-axis machining. In this way the cutting forces can be predicted during the machining process without a priori knowledge of the coefficients. The proposed methods are detailed and verified in case of ball-end milling, but the model also enables the applying of general-end cutters.


2009 ◽  
Vol 3 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Atsushi Matsubara ◽  
◽  
Soichi Ibaraki

Much research has gone into machining process monitoring and control. This paper reviews monitoring and control schemes of cutting force and torque. Sensors to measure cutting force and torque, as well as their indirect estimation, are reviewed. Feedback control schemes and model-based feedforward scheduling schemes of cutting forces, as well as tool path optimization schemes for cutting force regulation, are reviewed. The authors’ works are also briefly presented.


2020 ◽  
Vol 3 (1) ◽  
pp. 28-38
Author(s):  
Ashutosh Roushan ◽  
U. S. Rao ◽  
L. Vijayaraghavan

Mechanical micro-machining, in general, and micro-end-milling, in particular, has become a very good technique for fabricating 3D micro-features in a variety of materials. To optimize and control the process, prediction of the cutting force accurately is very important. In this work, a force prediction model is developed by a combination of analytical method and finite element (FE) simulations. The model predicts the cutting force components for micro-end-milling process successfully which is compared with experimental force signal obtained by using Al2024-T3 and AISI 4340 as workpiece materials. The predicted and experimental cutting forces are in very good agreement for both the amplitude and trend of the cutting force. The percentage deviation of the predicted force from the experimental force values for both feed force ( Fx) and transverse force ( Fy) is around 15% (except one case) for Al2024-T3. For the AISI 4340 material, the percentage deviation for Fx is around 25% and for Fy is approximately 10%. The methodology followed here is general in nature and it can be applied to any other machining process as well.


2000 ◽  
Author(s):  
Won-Soo Yun ◽  
Dong-Woo Cho

Abstract In this paper, a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters, the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.


Sign in / Sign up

Export Citation Format

Share Document