scholarly journals Oppo-Flood: An Energy-Efficient Data Dissemination Protocol for Asynchronous Duty-Cycled Wireless Sensor Networks

2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Hyeonsang Cho ◽  
Jungmin So

In this paper, we propose a data dissemination protocol for asynchronous duty-cycling wireless sensor networks. In an asynchronous duty-cycling network, each node independently selects its wake-up time. In this environment, data dissemination becomes energy consuming, because broadcasting a packet does reach all neighbors but only the neighbors that are awake at the time. A node can forward its packet to all neighbors by continuously transmitting the packet for a whole wake-up interval, but it leads to high energy consumption and high dissemination delay. The idea proposed in this paper is to use opportunistic forwarding, where each node forwards the packet to a neighbor that wakes up early and receives the packet. Each node forwards the packet, as long as there is a neighboring node that has not received the packet yet. The main benefit of this opportunistic forwarding-based dissemination is that every time a packet is disseminated, it may take a different path to reach the nodes. At the beginning of dissemination, a sender needs to transmit for a very short duration of time because there are plenty of neighboring nodes to receive the packet. As more nodes receive the packet, the transmit duration of the sender becomes longer, thus consuming more energy. Since the order of dissemination is different every time, energy consumption is naturally balanced among the nodes, without explicit measures. Through extensive simulations, we show that the proposed protocol achieves longer network lifetime and shorter dissemination delay compared to other dissemination protocols in various network environments.

2013 ◽  
Vol 5 (3) ◽  
pp. 34-54
Author(s):  
Shiow-Fen Hwang ◽  
Han-Huei Lin ◽  
Chyi-Ren Dow

In wireless sensor networks, due to limited energy, how to disseminate the event data in an energy-efficient way to allow sinks quickly querying and receiving the needed event data is a practical and important issue. Many studies about data dissemination have been proposed. However, most of them are not energy-efficient, especially in large-scale networks. Hence, in this paper the authors proposed an energy-efficient data dissemination scheme in large-scale wireless sensor networks. First, the authors design a data storage method which disseminates only a few amount event data by dividing the network into regions and levels, and thus reducing the energy consumption. Then, the authors develop an efficient sink query forwarding strategy by probability analysis so that a sink can query events easily according to its location to reduce the delay time of querying event data, as well as energy consumption. In addition, a simple and efficient maintenance mechanism is also provided. The simulation results show that the proposed scheme outperforms TTDD and LBDD in terms of the energy consumption and control overhead.


2018 ◽  
Vol 25 (6) ◽  
pp. 3419-3439 ◽  
Author(s):  
Ramin Yarinezhad ◽  
Seyyed Naser Hashemi

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Zhou ◽  
Lihua Yang ◽  
Longxiang Yang ◽  
Meng Ni

A novel energy-efficient data gathering scheme that exploits spatial-temporal correlation is proposed for clustered wireless sensor networks in this paper. In the proposed method, dual prediction is used in the intracluster transmission to reduce the temporal redundancy, and hybrid compressed sensing is employed in the intercluster transmission to reduce the spatial redundancy. Moreover, an error threshold selection scheme is presented for the prediction model by optimizing the relationship between the energy consumption and the recovery accuracy, which makes the proposed method well suitable for different application environments. In addition, the transmission energy consumption is derived to verify the efficiency of the proposed method. Simulation results show that the proposed method has higher energy efficiency compared with the existing schemes, and the sink can recover measurements with reasonable accuracy by using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document