scholarly journals Application of Improved Particle Swarm Optimization in Vehicle Crashworthiness

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Dawei Gao ◽  
Xiangyang Li ◽  
Haifeng Chen

In the optimization design process, particle swarm optimization (PSO) is limited by its slow convergence, low precision, and tendency to easily fall into the local extremum. These limitations make degradation inevitable in the evolution process and cause failure of finding the global optimum results. In this paper, based on chaos idea, the PSO algorithm is improved by adaptively adjusting parameters r1 and r2. The improved PSO is verified by four standard mathematical test functions. The results prove that the improved algorithm exhibits excellent convergence speed, global search ability, and stability in the optimization process, which jumps out of the local optimum and achieves global optimality due to the randomness, regularity, and ergodicity of chaotic thought. At last, the improved PSO algorithm is applied to vehicle crash research and is used to carry out the multiobjective optimization based on an approximate model. Compared with the results before the improvement, the improved PSO algorithm is remarkable in the collision index, which includes vehicle acceleration, critical position intrusion, and vehicle mass. In summary, the improved PSO algorithm has excellent optimization effects on vehicle collision.

2010 ◽  
Vol 20-23 ◽  
pp. 1280-1285
Author(s):  
Jian Xiang Wei ◽  
Yue Hong Sun

The particle swarm optimization (PSO) algorithm is a new population search strategy, which has exhibited good performance through well-known numerical test problems. However, it is easy to trap into local optimum because the population diversity becomes worse during the evolution. In order to overcome the shortcoming of the PSO, this paper proposes an improved PSO based on the symmetry distribution of the particle space position. From the research of particle movement in high dimensional space, we can see: the more symmetric of the particle distribution, the bigger probability can the algorithm be during converging to the global optimization solution. A novel population diversity function is put forward and an adjustment algorithm is put into the basic PSO. The steps of the proposed algorithm are given in detail. With two typical benchmark functions, the experimental results show the improved PSO has better convergence precision than the basic PSO.


2013 ◽  
Vol 394 ◽  
pp. 505-508 ◽  
Author(s):  
Guan Yu Zhang ◽  
Xiao Ming Wang ◽  
Rui Guo ◽  
Guo Qiang Wang

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.


2012 ◽  
Vol 532-533 ◽  
pp. 1553-1557 ◽  
Author(s):  
Yue Yang ◽  
Shu Xu Guo ◽  
Run Lan Tian ◽  
Peng Liu

A novel image segmentation algorithm based on fuzzy C-means (FCM) clustering and improved particle swarm optimization (PSO) is proposed. The algorithm takes global search results of improved PSO as the initialized values of the FCM, effectively avoiding easily trapping into local optimum of the traditional FCM and the premature convergence of PSO. Meanwhile, the algorithm takes the clustering centers as the reference to search scope of improved PSO algorithm for global searching that are obtained through hard C-means (HCM) algorithm for improving the velocity of the algorithm. The experimental results show the proposed algorithm can converge more quickly and segment the image more effectively than the traditional FCM algorithm.


2015 ◽  
Vol 9 (1) ◽  
pp. 961-965
Author(s):  
Zhou Ning ◽  
Zhang Jing

In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search was carried out on the optimal position of the particles during evolution, so as to improve the development capability of PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the study object, objective function and constraint conditions were determined by building a mathematical model of optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a faster convergence rate.


2012 ◽  
Vol 538-541 ◽  
pp. 2658-2661
Author(s):  
Ri Su Na ◽  
Qiang Li ◽  
Li Ji Wu

Based on the standard particle swarm optimization an improved PSO algorithm was introduced in this paper. The particle swarm optimization algorithm with prior low precision, divergent character and slow late convergence is improved by joining the negative gradient. By adding negative term on standard PSO formula, combining with coefficient of negative gradient term and inertia weight , lead to effectively balance between the local and global search ability. It will accelerate convergence and avoid local optimum. Moreover, from the bionic point of view, this improved PSO algorithm is closer to the reality of the actual situation of the bird flocking. From the simulation results of four typical test functions, it can be seen that an improved particle swarm optimization with negative gradient can significantly improve the solving speed and solution quality.


2019 ◽  
Vol 18 (03) ◽  
pp. 833-866 ◽  
Author(s):  
Mi Li ◽  
Huan Chen ◽  
Xiaodong Wang ◽  
Ning Zhong ◽  
Shengfu Lu

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Hao Li ◽  
Hongbin Jin ◽  
Hanzhong Wang ◽  
Yanyan Ma

For the first time , the Holonic Particle Swarm Optimization (HPSO ) algorithm applies multiagent theory about the improvement in the PSO algorithm and achieved good results. In order to further improve the performance of the algorithm, this paper proposes an improved Adaptive Holonic Particle Swarm Optimization (AHPSO) algorithm. Firstly, a brief review of the HPSO algorithm is carried out, and the HPSO algorithm can be further studied in three aspects: grouping strategy, iteration number setting, and state switching discrimination. The HPSO algorithm uses an approximately uniform grouping strategy that is the simplest but does not consider the connections between particles. And if the particles with larger or smaller differences are grouped together in different search stages, the search efficiency will be improved. Therefore, this paper proposes a grouping strategy based on information entropy and system clustering and combines two grouping strategies with corresponding search methods. The performance of the HPSO algorithm depends on the setting of the number of iterations. If it is too small, it is difficult to search for the optimal and it wastes so many computing resources. Therefore, this paper constructs an adaptive termination condition that causes the particles to terminate spontaneously after convergence. The HPSO algorithm only performs a conversion from extensive search to exact search and still has the potential to fall into local optimum. This paper proposes a state switching condition to improve the probability that the algorithm jumps out of the local optimum. Finally, AHPSO and HPSO are compared by using 22 groups of standard test functions. AHPSO is faster in convergence than HPSO, and the number of iterations of AHPSO convergence is employed in HPSO. At this point, there exists a large gap between HPSO and the optimal solution, i.e., AHPSO can have better algorithm efficiency without setting the number of iterations.


2012 ◽  
Vol 424-425 ◽  
pp. 535-539
Author(s):  
Liang Ming Hu ◽  
Yi Zhi Li

Particle Swarm Optimization (PSO) algorithm is a technique for optimization based on iteration, which initializes system to product a series of random solutions, in this solution space, particles commit themselves to search for a better solution and in the final the optimal one is found. Applying this algorithm to the design of gravity dam section then we find: PSO, as shown by the example given in this paper, is an available algorithm which is not only tally with the actual situation, but safe and economical. So, PSO provides a new idea and method for optimization design of gravity dam section.


Author(s):  
Chunli Zhu ◽  
Yuan Shen ◽  
Xiujun Lei

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.


Sign in / Sign up

Export Citation Format

Share Document