scholarly journals Improved Adaptive Holonic Particle Swarm Optimization

2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Hao Li ◽  
Hongbin Jin ◽  
Hanzhong Wang ◽  
Yanyan Ma

For the first time , the Holonic Particle Swarm Optimization (HPSO ) algorithm applies multiagent theory about the improvement in the PSO algorithm and achieved good results. In order to further improve the performance of the algorithm, this paper proposes an improved Adaptive Holonic Particle Swarm Optimization (AHPSO) algorithm. Firstly, a brief review of the HPSO algorithm is carried out, and the HPSO algorithm can be further studied in three aspects: grouping strategy, iteration number setting, and state switching discrimination. The HPSO algorithm uses an approximately uniform grouping strategy that is the simplest but does not consider the connections between particles. And if the particles with larger or smaller differences are grouped together in different search stages, the search efficiency will be improved. Therefore, this paper proposes a grouping strategy based on information entropy and system clustering and combines two grouping strategies with corresponding search methods. The performance of the HPSO algorithm depends on the setting of the number of iterations. If it is too small, it is difficult to search for the optimal and it wastes so many computing resources. Therefore, this paper constructs an adaptive termination condition that causes the particles to terminate spontaneously after convergence. The HPSO algorithm only performs a conversion from extensive search to exact search and still has the potential to fall into local optimum. This paper proposes a state switching condition to improve the probability that the algorithm jumps out of the local optimum. Finally, AHPSO and HPSO are compared by using 22 groups of standard test functions. AHPSO is faster in convergence than HPSO, and the number of iterations of AHPSO convergence is employed in HPSO. At this point, there exists a large gap between HPSO and the optimal solution, i.e., AHPSO can have better algorithm efficiency without setting the number of iterations.

2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2019 ◽  
Vol 61 (4) ◽  
pp. 177-185
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß

Abstract A discrete particle swarm optimization (PSO) algorithm is a randomized search heuristic for discrete optimization problems. A fundamental question about randomized search heuristics is how long it takes, in expectation, until an optimal solution is found. We give an overview of recent developments related to this question for discrete PSO algorithms. In particular, we give a comparison of known upper and lower bounds of expected runtimes and briefly discuss the techniques used to obtain these bounds.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 357 ◽  
Author(s):  
Shu-Kai S. Fan ◽  
Chih-Hung Jen

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.


2019 ◽  
Vol 18 (03) ◽  
pp. 833-866 ◽  
Author(s):  
Mi Li ◽  
Huan Chen ◽  
Xiaodong Wang ◽  
Ning Zhong ◽  
Shengfu Lu

The particle swarm optimization (PSO) algorithm is simple to implement and converges quickly, but it easily falls into a local optimum; on the one hand, it lacks the ability to balance global exploration and local exploitation of the population, and on the other hand, the population lacks diversity. To solve these problems, this paper proposes an improved adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The AIWPSO algorithm includes two strategies: (1) An inertia weight adjustment method based on the optimal fitness value of individual particles is proposed, so that different particles have different inertia weights. This method increases the diversity of inertia weights and is conducive to balancing the capabilities of global exploration and local exploitation. (2) A mutation threshold is used to determine which particles need to be mutated. This method compensates for the inaccuracy of random mutation, effectively increasing the diversity of the population. To evaluate the performance of the proposed AIWPSO algorithm, benchmark functions are used for testing. The results show that AIWPSO achieves satisfactory results compared with those of other PSO algorithms. This outcome shows that the AIWPSO algorithm is conducive to balancing the abilities of the global exploration and local exploitation of the population, while increasing the diversity of the population, thereby significantly improving the optimization ability of the PSO algorithm.


2010 ◽  
Vol 20-23 ◽  
pp. 1280-1285
Author(s):  
Jian Xiang Wei ◽  
Yue Hong Sun

The particle swarm optimization (PSO) algorithm is a new population search strategy, which has exhibited good performance through well-known numerical test problems. However, it is easy to trap into local optimum because the population diversity becomes worse during the evolution. In order to overcome the shortcoming of the PSO, this paper proposes an improved PSO based on the symmetry distribution of the particle space position. From the research of particle movement in high dimensional space, we can see: the more symmetric of the particle distribution, the bigger probability can the algorithm be during converging to the global optimization solution. A novel population diversity function is put forward and an adjustment algorithm is put into the basic PSO. The steps of the proposed algorithm are given in detail. With two typical benchmark functions, the experimental results show the improved PSO has better convergence precision than the basic PSO.


2011 ◽  
Vol 383-390 ◽  
pp. 7208-7213
Author(s):  
De Kun Tan

To overcome the shortage of standard Particle Swarm Optimization(SPSO) on premature convergence, Quantum-behaved Particle Swarm Optimization (QPSO) is presented to solve engineering constrained optimization problem. QPSO algorithm is a novel PSO algorithm model in terms of quantum mechanics. The model is based on Delta potential, and we think the particle has the behavior of quanta. Because the particle doesn’t have a certain trajectory, it has more randomicity than the particle which has fixed path in PSO, thus the QPSO more easily escapes from local optima, and has more capability to seek the global optimal solution. In the period of iterative optimization, outside point method is used to deal with those particles that violate the constraints. Furthermore, compared with other intelligent algorithms, the QPSO is verified by two instances of engineering constrained optimization, experimental results indicate that the algorithm performs better in terms of accuracy and robustness.


2013 ◽  
Vol 394 ◽  
pp. 505-508 ◽  
Author(s):  
Guan Yu Zhang ◽  
Xiao Ming Wang ◽  
Rui Guo ◽  
Guo Qiang Wang

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.


Author(s):  
Alaa Tharwat ◽  
Tarek Gaber ◽  
Aboul Ella Hassanien ◽  
Basem E. Elnaghi

Optimization algorithms are necessary to solve many problems such as parameter tuning. Particle Swarm Optimization (PSO) is one of these optimization algorithms. The aim of PSO is to search for the optimal solution in the search space. This paper highlights the basic background needed to understand and implement the PSO algorithm. This paper starts with basic definitions of the PSO algorithm and how the particles are moved in the search space to find the optimal or near optimal solution. Moreover, a numerical example is illustrated to show how the particles are moved in a convex optimization problem. Another numerical example is illustrated to show how the PSO trapped in a local minima problem. Two experiments are conducted to show how the PSO searches for the optimal parameters in one-dimensional and two-dimensional spaces to solve machine learning problems.


Author(s):  
Agung Mustika Rizki ◽  
Afina Lina Nurlaili

In the industrial world, companies need to manage their production areas well. One way is to implement aggregate production planning. The goal is that the production costs incurred by the company can be controlled properly. However, production planning cannot be formulated quickly. The problem is more complicated if the company has several production locations. The difference in location also affects the production references and standards applied in each location. Based on these problems, the authors propose to apply the Particle Swarm Optimization (PSO) algorithm to solve the problem of aggregate production planning in order to obtain the optimal solution for each production location. As a result, the algorithm proposed by the author can produce optimal and efficient solutions for 6 production sites. This is evidenced by the relatively short time required compared to the previous planning by the company.


2012 ◽  
Vol 532-533 ◽  
pp. 1664-1669 ◽  
Author(s):  
Jun Li Zhang ◽  
Da Wei Dai

For the purpose of overcoming the premature property and low execution efficiency of the Particle Swarm Optimization (PSO) algorithm, this paper presents a particle swarm optimization algorithm based on the pattern search. In this algorithm, personal and global optimum particles are chosen in every iteration by a probability. Then, local optimization will be performed by the pattern search and then the original individuals will be replaced. The strong local search function of the pattern search provides an effective mechanism for the PSO algorithm to escape from the local optimum, which avoids prematurity of the algorithm. Simulation shows that this algorithm features a stronger function of global search than conventional PSO, so that the optimization process can be improved remarkably.


Sign in / Sign up

Export Citation Format

Share Document