scholarly journals Bounded Analysis and Practical Tracking Control of Complex Stochastic Nonlinear Systems with Unknown Control Coefficients

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Long-Chuan Guo ◽  
Xiang-Kun Fang

This paper mainly focuses on the output practical tracking controller design for a class of complex stochastic nonlinear systems with unknown control coefficients. In the existing research results, most of the complex systems are controlled in a certain direction, which leads to the disconnection between theoretical results and practical applications. The authors introduce unknown control coefficients, and the values of the upper and lower bounds of the control coefficients are generalized by constants to allow arbitrary values to be arbitrarily large or arbitrarily small. In the control design program, the design problem of the controller is transformed into a parameter construction problem by introducing appropriate coordinate transformation. Moreover, we construct an output feedback practical tracking controller based on the dynamic and static phase combined by Ito stochastic differential theory and selection of appropriate design parameters, ensuring that the system tracking error can be made arbitrarily small after some large enough time. Finally, a simulation example is provided to illustrate the efficiency of the theoretical results.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Long-Chuan Guo

This paper mainly focuses on output feedback practical tracking controller design for stochastic nonlinear systems with polynomial function growth conditions. Mostly, there are some studies on output feedback tracking control problem for general nonlinear systems with parametric certainty in existing achievements. Moreover, we extend it to stochastic nonlinear systems with parametric uncertainty and system nonlinear terms are assumed to satisfy polynomial function growth conditions which are more relaxed than linear growth conditions or power growth conditions. Due to the presence of unknown parametric uncertainty, an output feedback practical tracking controller with dynamically updated gains is constructed explicitly so that all the states of the closed-loop systems are globally bounded and the tracking error belongs to arbitrarily small interval after some positive finite time. An example illustrates the efficiency of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document