scholarly journals Everolimus-Eluting Biodegradable Abluminal Coating Stent versus Durable Conformal Coating Stent: Termination of the Inflammatory Response Associated with Neointimal Healing in a Porcine Coronary Model

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Masayuki Mori ◽  
Kenji Sakata ◽  
Junichiro Yokawa ◽  
Chiaki Nakanishi ◽  
Kota Murai ◽  
...  

Objectives. We evaluated the effect of the different carrier systems on early vascular response through histological analysis and scanning electron microscopy using a porcine model. Background. Although Synergy™ and Promus PREMIER™ share an identical stent material and drug elution (everolimus), they use different drug carrier systems: biodegradable abluminal coating polymer or durable conformal coating polymer, respectively. However, data regarding the impact of the different coating systems on vessel healing are currently limited. Methods. Twelve Synergy™ and Promus PREMIER™ were implanted in 12 swine. Histopathological analysis of the stented segments was performed on the 2nd and 14th days after implantation. Morphometric analysis of the inflammation and intimal fibrin content was also performed. Results. On the 2nd day, neointimal thickness, percentage of neointimal area, and inflammatory and intimal fibrin content scores were not significantly different between the two groups. On the 14th day, the inflammatory and intimal fibrin content scores were significantly lower in Synergy™ versus those observed in Promus PREMIER™. In Synergy™, smooth muscle cells were found and the neointimal layers were smooth. In contrast, inflammatory cells were observed surrounding the struts of Promus PREMIER™. Conclusions. These results demonstrate that termination of reactive inflammation is accelerated after abluminal coating stent versus implantation of conformal coating stent.

2012 ◽  
Vol 188 ◽  
pp. 1-14 ◽  
Author(s):  
Chau Chun Beh ◽  
Raffaella Mammucari ◽  
Neil R. Foster

Author(s):  
Abraham Domb ◽  
Neeraj Kumar ◽  
Tzviel Sheskin ◽  
Alfonso Bentolila ◽  
Joram Slager ◽  
...  

Author(s):  
Hiroyuki Koide ◽  
Tomohiro Asai ◽  
Kosuke Shimizu ◽  
Naoto Oku

Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 307 ◽  
Author(s):  
Junwei Zhao ◽  
Federica Santino ◽  
Daria Giacomini ◽  
Luca Gentilucci

Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.


1987 ◽  
Vol 110 ◽  
Author(s):  
Stephen D. Bruck ◽  
M. Kojima

Sorption processes (adsorption, absorption, permeation) are of considerable importance in the physico-chemical and biological performance of polymeric biomaterials, especially in cardiovascular applications, and in various controlled drug release and drug carrier systems [1,2]. Transport of molecules of widely ranging molecular weights through synthetic as well as biologic membranes represents a basic process in the performance of many medical devices.


Sign in / Sign up

Export Citation Format

Share Document