integrin ligands
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 24)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
pp. 204-219
Author(s):  
Nahid Abbas ◽  
Mohammad Yusuf ◽  
Naseem Akhtar ◽  
Riaz A. Khan

Abstract The integrins belong to the cell-surface polypeptide family and are the mediating partners among the cells, and extracellular matrix (ECM). They are also involved in the biological processes of cell migration, wound healing, blood clotting, immunological response generation, tissue morphogenesis, leucocyte reticulations, and angiogenesis and are therefore very relevant in stem cell technology and are useful as biomarkers, diagnostic probes, and drug-target ligands. The ανβ3 (alpha-nu-beta3) integrin antagonists are an excellent target example for designing and developing newer drug candidates, drug leads and templates for various diseases, and physiological malfunctioning, including cancers. The current review examines the ανβ3 integrin structural features involved in the drug design and its antagonistic ligands and highlights the development of anti-ανβ3 integrin-antagonists as nano-architectural design-based nanomedicine, especially for cancer chemotherapy. The perspectival review discusses the ανβ3 integrin structure, mode of action, involved pathways, and the concepts utilized in nanomedicine design, and ligands related to integrins. It also covers the latest thyrointegrin approaches toward the development of anti-angiogenesis agents and entails the anti-angiogenesis approach to cancer growth inhibition through targeting by the anti-integrin ligands and related chemical entities. The current perspective on the nano-architectural design approach for the known anti-integrin compounds is also outlined.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1737
Author(s):  
Michele Anselmi ◽  
Monica Baiula ◽  
Federica Santino ◽  
Junwei Zhao ◽  
Santi Spampinato ◽  
...  

Arg-Gly-Asp (RGD)-binding integrins, e.g., αvβ3, αvβ1, αvβ5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4β1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4β1 integrin, we designed hybrid α/β peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide–zeolite MLs were able to capture selectively α4β1 integrin-expressing cells. In perspective, the α4β1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4β1 integrin-correlated diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katja Steiger ◽  
Neil Gerard Quigley ◽  
Tanja Groll ◽  
Frauke Richter ◽  
Maximilian Alexander Zierke ◽  
...  

Abstract Background In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. Results The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. Conclusions Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.


Author(s):  
Monica Baiula ◽  
Martina Cirillo ◽  
Giulia Martelli ◽  
Valentina Giraldi ◽  
Elisa Gasparini ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1711
Author(s):  
Beatrice S. Ludwig ◽  
Horst Kessler ◽  
Susanne Kossatz ◽  
Ute Reuning

Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 299
Author(s):  
Martina Cirillo ◽  
Daria Giacomini

Integrins are cell adhesion receptors overexpressed in tumor cells. A direct inhibition of integrins was investigated, but the best inhibitors performed poorly in clinical trials. A gained attention towards these receptors arouse because they could be target for a selective transport of cytotoxic agents. Several active-targeting systems have been developed to use integrins as a selective cell entrance for some antitumor agents. The aim of this review paper is to report on the most recent results on covalent conjugates between integrin ligands and antitumor drugs. Cytotoxic drugs thus conjugated through specific linker to integrin ligands, mainly RGD peptides, demonstrated that the covalent conjugates were more selective against tumor cells and hopefully with fewer side effects than the free drugs.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5966
Author(s):  
Silvia Panzeri ◽  
Daniela Arosio ◽  
Silvia Gazzola ◽  
Laura Belvisi ◽  
Monica Civera ◽  
...  

Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.


2020 ◽  
Vol 26 (59) ◽  
pp. 13468-13475
Author(s):  
Kelly Bugatti ◽  
Agostino Bruno ◽  
Daniela Arosio ◽  
Andrea Sartori ◽  
Claudio Curti ◽  
...  
Keyword(s):  

Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 307 ◽  
Author(s):  
Junwei Zhao ◽  
Federica Santino ◽  
Daria Giacomini ◽  
Luca Gentilucci

Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.


2020 ◽  
Vol 4 (15) ◽  
pp. 3559-3571
Author(s):  
Sumith R. Panicker ◽  
Tadayuki Yago ◽  
Bojing Shao ◽  
Rodger P. McEver

Abstract Ezrin/radixin/moesin (ERM) proteins are adaptors that link the actin cytoskeleton to the cytoplasmic domains of membrane proteins. Leukocytes express mostly moesin with lower levels of ezrin but no radixin. When leukocytes are activated, ERMs are postulated to redistribute membrane proteins from microvilli into uropods during polarization and to transduce signals that influence adhesion and other responses. However, these functions have not been tested in leukocytes lacking all ERMs. We used knockout (KO) mice with neutrophils lacking ezrin, moesin, or both proteins (double knockout [DKO]) to probe how ERMs modulate cell shape, adhesion, and signaling in vitro and in vivo. Surprisingly, chemokine-stimulated DKO neutrophils still polarized and redistributed ERM-binding proteins such as PSGL-1 and CD44 to the uropods. Selectin binding to PSGL-1 on moesin KO or DKO neutrophils activated kinases that enable integrin-dependent slow rolling but not those that generate neutrophil extracellular traps. Flowing neutrophils of all genotypes rolled normally on selectins and, upon chemokine stimulation, arrested on integrin ligands. However, moesin KO and DKO neutrophils exhibited defective integrin outside-in signaling and reduced adhesion strength. In vivo, DKO neutrophils displayed normal directional crawling toward a chemotactic gradient, but premature detachment markedly reduced migration from venules into inflamed tissues. Our results demonstrate that stimulated neutrophils do not require ERMs to polarize or to move membrane proteins into uropods. They also reveal an unexpected contribution of moesin to integrin outside-in signaling and adhesion strengthening.


Sign in / Sign up

Export Citation Format

Share Document