scholarly journals Flavor Mixing and the Permutation Symmetry among Generations

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
T. K. Kuo ◽  
S. H. Chiu

In the standard model, the permutation symmetry among the three generations of fundamental fermions is usually regarded to be broken by the Higgs couplings. It is found that the symmetry is restored if we include the mass matrix parameters as physical variables which transform appropriately under the symmetry operation. Known relations between these variables, such as the renormalization group equations, as well as formulas for neutrino oscillations (in vacuum and in matter), are shown to be covariant tensor equations under the permutation symmetry group.

2020 ◽  
Vol 80 (3) ◽  
Author(s):  
T. K. Kuo ◽  
S. H. Chiu

AbstractWith some modifications, the arguments for rephasing invariance can be used to establish permutation symmetry for the standard model. The laws of evolution of physical variables, which transform as tensors under permutation, are found to obey the symmetry, explicitly. We also propose to use a set of four mixing parameters, with unique properties, which may serve to characterize flavor mixing.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


1991 ◽  
Vol 06 (04) ◽  
pp. 325-332
Author(s):  
C.E. VAYONAKIS

We examine the renormalization group equations for the standard model interactions realized at higher Kac-Moody levels, as derived from superstring theories. We try to find constraints on these levels, considering both perturbative and non-perturbative unification.


2012 ◽  
Vol 22 (1) ◽  
pp. 1-6
Author(s):  
Hoang Ngoc Long ◽  
Nguyen Thi Kim Ngan

Renormalization group equations of the 3-3-1 models with A4 and S4 flavor symmetries as the only intermediate gauge group between the standard model and the scale of unification of the three coupling constants are presented. We shall assume that there is no necessarily a group of grand unification at the scale of convergence of the couplings.


1994 ◽  
Vol 09 (04) ◽  
pp. 289-297 ◽  
Author(s):  
G. CVETIČ ◽  
C.S. KIM

We assume that the standard model (SM) breaks down around some energy Λ, and is replaced by a new (Higgsless) flavor gauge theory (FGT). We investigate this possibility by studying the renormalization group equations for the Yukawa couplings of SM with two Higgs doublets for various mt and υU/υD. With appropriate flavor democratic boundary conditions at Λ FGT , we derive the bounds on masses of top and tau-neutrino, which are compatible with experimental bounds.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


Sign in / Sign up

Export Citation Format

Share Document