scholarly journals Change Detection in Multitemporal High Spatial Resolution Remote-Sensing Images Based on Saliency Detection and Spatial Intuitionistic Fuzzy C-Means Clustering

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Huang ◽  
Qiuzhi Peng ◽  
Xueqin Yu

In order to improve the change detection accuracy of multitemporal high spatial resolution remote-sensing (HSRRS) images, a change detection method of multitemporal remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means (SIFCM) clustering is proposed. Firstly, the cluster-based saliency cue method is used to obtain the saliency maps of two temporal remote-sensing images; then, the saliency difference is obtained by subtracting the saliency maps of two temporal remote-sensing images; finally, the SIFCM clustering algorithm is used to classify the saliency difference image to obtain the change regions and unchange regions. Two data sets of multitemporal high spatial resolution remote-sensing images are selected as the experimental data. The detection accuracy of the proposed method is 96.17% and 97.89%. The results show that the proposed method is a feasible and better performance multitemporal remote-sensing image change detection method.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Huang ◽  
Yuanmin Fang ◽  
Xiaoqing Zuo ◽  
Xueqin Yu

This paper presents a new automatic change detection method of multitemporal remote sensing images based on 2D-Otsu algorithm improved by Firefly algorithm. The proposed method is designed to automatically extract the changing area between two temporal remote sensing images. First, two different temporal remote sensing images were acquired through difference value method of remote sensing images; then, the 2D-Otsu threshold segmentation principles are analyzed and the optimal threshold of 2D-Otsu threshold segmentation method is figured out by using the Firefly algorithm, where the difference images are conducted with binary classification to obtain the changing category and the nonchanging category; finally, the proposed method is used to carry out change detection experiments on the two selected areas, where a variety of methods are compared. Experimental results show that the proposed method can effectively and quickly extract the changing area between the two temporal remote sensing images; thus, it is an effective method of change detection for remote sensing images.


2015 ◽  
Vol 109 ◽  
pp. 108-125 ◽  
Author(s):  
Xinghua Li ◽  
Nian Hui ◽  
Huanfeng Shen ◽  
Yunjie Fu ◽  
Liangpei Zhang

2018 ◽  
Vol 10 (11) ◽  
pp. 1737 ◽  
Author(s):  
Jinchao Song ◽  
Tao Lin ◽  
Xinhu Li ◽  
Alexander V. Prishchepov

Fine-scale, accurate intra-urban functional zones (urban land use) are important for applications that rely on exploring urban dynamic and complexity. However, current methods of mapping functional zones in built-up areas with high spatial resolution remote sensing images are incomplete due to a lack of social attributes. To address this issue, this paper explores a novel approach to mapping urban functional zones by integrating points of interest (POIs) with social properties and very high spatial resolution remote sensing imagery with natural attributes, and classifying urban function as residence zones, transportation zones, convenience shops, shopping centers, factory zones, companies, and public service zones. First, non-built and built-up areas were classified using high spatial resolution remote sensing images. Second, the built-up areas were segmented using an object-based approach by utilizing building rooftop characteristics (reflectance and shapes). At the same time, the functional POIs of the segments were identified to determine the functional attributes of the segmented polygon. Third, the functional values—the mean priority of the functions in a road-based parcel—were calculated by functional segments and segmental weight coefficients. This method was demonstrated on Xiamen Island, China with an overall accuracy of 78.47% and with a kappa coefficient of 74.52%. The proposed approach could be easily applied in other parts of the world where social data and high spatial resolution imagery are available and improve accuracy when automatically mapping urban functional zones using remote sensing imagery. It will also potentially provide large-scale land-use information.


Sign in / Sign up

Export Citation Format

Share Document