saliency maps
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 151)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 15 ◽  
Author(s):  
Ying Yu ◽  
Jun Qian ◽  
Qinglong Wu

This article proposes a bottom-up visual saliency model that uses the wavelet transform to conduct multiscale analysis and computation in the frequency domain. First, we compute the multiscale magnitude spectra by performing a wavelet transform to decompose the magnitude spectrum of the discrete cosine coefficients of an input image. Next, we obtain multiple saliency maps of different spatial scales through an inverse transformation from the frequency domain to the spatial domain, which utilizes the discrete cosine magnitude spectra after multiscale wavelet decomposition. Then, we employ an evaluation function to automatically select the two best multiscale saliency maps. A final saliency map is generated via an adaptive integration of the two selected multiscale saliency maps. The proposed model is fast, efficient, and can simultaneously detect salient regions or objects of different sizes. It outperforms state-of-the-art bottom-up saliency approaches in the experiments of psychophysical consistency, eye fixation prediction, and saliency detection for natural images. In addition, the proposed model is applied to automatic ship detection in optical satellite images. Ship detection tests on satellite data of visual optical spectrum not only demonstrate our saliency model's effectiveness in detecting small and large salient targets but also verify its robustness against various sea background disturbances.


2022 ◽  
Author(s):  
Yaozhi Lu ◽  
Shahab Aslani ◽  
Mark Emberton ◽  
Daniel C Alexander ◽  
Joseph Jacob

In this study, the long-term mortality in the National Lung Screening Trial (NLST) was investigated using a deep learning-based method. Binary classification of the non-lung-cancer mortality (i.e. cardiovascular and respiratory mortality) was performed using neural network models centered around a 3D-ResNet. The models were trained on a participant age, gender, and smoking history matched cohort. Utilising both the 3D CT scan and clinical information, the models can achieve an AUC of 0.73 which outperforms humans at cardiovascular mortality prediction. By interpreting the trained models with 3D saliency maps, we examined the features on the CT scans that correspond to the mortality signal. The saliency maps can potentially assist the clinicians' and radiologists' to identify regions of concern on the image that may indicate the need to adopt preventative healthcare management strategies to prolong the patients' life expectancy.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Julie Sparholt Walbech ◽  
Savvas Kinalis ◽  
Ole Winther ◽  
Finn Cilius Nielsen ◽  
Frederik Otzen Bagger

Autoencoders have been used to model single-cell mRNA-sequencing data with the purpose of denoising, visualization, data simulation, and dimensionality reduction. We, and others, have shown that autoencoders can be explainable models and interpreted in terms of biology. Here, we show that such autoencoders can generalize to the extent that they can transfer directly without additional training. In practice, we can extract biological modules, denoise, and classify data correctly from an autoencoder that was trained on a different dataset and with different cells (a foreign model). We deconvoluted the biological signal encoded in the bottleneck layer of scRNA-models using saliency maps and mapped salient features to biological pathways. Biological concepts could be associated with specific nodes and interpreted in relation to biological pathways. Even in this unsupervised framework, with no prior information about cell types or labels, the specific biological pathways deduced from the model were in line with findings in previous research. It was hypothesized that autoencoders could learn and represent meaningful biology; here, we show with a systematic experiment that this is true and even transcends the training data. This means that carefully trained autoencoders can be used to assist the interpretation of new unseen data.


2021 ◽  
Vol 12 (1) ◽  
pp. 148
Author(s):  
Francesca Lizzi ◽  
Camilla Scapicchio ◽  
Francesco Laruina ◽  
Alessandra Retico ◽  
Maria Evelina Fantacci

We propose and evaluate a procedure for the explainability of a breast density deep learning based classifier. A total of 1662 mammography exams labeled according to the BI-RADS categories of breast density was used. We built a residual Convolutional Neural Network, trained it and studied the responses of the model to input changes, such as different distributions of class labels in training and test sets and suitable image pre-processing. The aim was to identify the steps of the analysis with a relevant impact on the classifier performance and on the model explainability. We used the grad-CAM algorithm for CNN to produce saliency maps and computed the Spearman’s rank correlation between input images and saliency maps as a measure of explanation accuracy. We found that pre-processing is critical not only for accuracy, precision and recall of a model but also to have a reasonable explanation of the model itself. Our CNN reaches good performances compared to the state-of-art and it considers the dense pattern to make the classification. Saliency maps strongly correlate with the dense pattern. This work is a starting point towards the implementation of a standard framework to evaluate both CNN performances and the explainability of their predictions in medical image classification problems.


2021 ◽  
Author(s):  
Jiajin Zhang ◽  
Hanqing Chao ◽  
Mannudeep K Kalra ◽  
Ge Wang ◽  
Pingkun Yan

While various methods have been proposed to explain AI models, the trustworthiness of the generated explanation received little examination. This paper reveals that such explanations could be vulnerable to subtle perturbations on the input and generate misleading results. On the public CheXpert dataset, we demonstrate that specially designed adversarial perturbations can easily tamper saliency maps towards the desired explanations while preserving the original model predictions. AI researchers, practitioners, and authoritative agencies in the medical domain should use caution when explaining AI models because such an explanation could be irrelevant, misleading, and even adversarially manipulated without changing the model output.


2021 ◽  
Author(s):  
Selena I. Huisman ◽  
Arthur T.J. van der Boog ◽  
Fia Cialdella ◽  
Joost J.C. Verhoeff ◽  
Szabolcs David

Background and purpose. Changes of healthy appearing brain tissue after radiotherapy have been previously observed, however, they remain difficult to quantify. Due to these changes, patients undergoing radiotherapy may have a higher risk of cognitive decline, leading to a reduced quality of life. The experienced tissue atrophy is similar to the effects of normal aging in healthy individuals. We propose a new way to quantify tissue changes after cranial RT as accelerated brain aging using the BrainAGE framework. Materials and methods. BrainAGE was applied to longitudinal MRI scans of 32 glioma patients, who have undergone radiotherapy. Utilizing a pre-trained deep learning model, brain age is estimated for all patients' pre-radiotherapy planning and follow-up MRI scans to get a quantification of the changes occurring in the brain over time. Saliency maps were extracted from the model to spatially identify which areas of the brain the deep learning model weighs highest for predicting age. The predicted ages from the deep learning model were used in a linear mixed effects model to quantity aging and aging rates for patients after radiotherapy. Results. The linear mixed effects model resulted in an accelerated aging rate of 2.78 years per year, a significant increase over a normal aging rate of 1 (p <0.05, confidence interval (CI) = 2.54-3.02). Furthermore, the saliency maps showed numerous anatomically well-defined areas, e.g.: Heschl's gyrus among others, determined by the model as important for brain age prediction. Conclusion. We found that patients undergoing radiotherapy are affected by significant radiation- induced accelerated aging, with several anatomically well-defined areas contributing to this aging. The estimated brain age could provide a method for quantifying quality of life post-radiotherapy.


2021 ◽  
Vol 13 (24) ◽  
pp. 5144
Author(s):  
Baodi Liu ◽  
Lifei Zhao ◽  
Jiaoyue Li ◽  
Hengle Zhao ◽  
Weifeng Liu ◽  
...  

Deep learning has recently attracted extensive attention and developed significantly in remote sensing image super-resolution. Although remote sensing images are composed of various scenes, most existing methods consider each part equally. These methods ignore the salient objects (e.g., buildings, airplanes, and vehicles) that have more complex structures and require more attention in recovery processing. This paper proposes a saliency-guided remote sensing image super-resolution (SG-GAN) method to alleviate the above issue while maintaining the merits of GAN-based methods for the generation of perceptual-pleasant details. More specifically, we exploit the salient maps of images to guide the recovery in two aspects: On the one hand, the saliency detection network in SG-GAN learns more high-resolution saliency maps to provide additional structure priors. On the other hand, the well-designed saliency loss imposes a second-order restriction on the super-resolution process, which helps SG-GAN concentrate more on the salient objects of remote sensing images. Experimental results show that SG-GAN achieves competitive PSNR and SSIM compared with the advanced super-resolution methods. Visual results demonstrate our superiority in restoring structures while generating remote sensing super-resolution images.


2021 ◽  
Author(s):  
Ronilo Ragodos ◽  
Tong Wang ◽  
Carmencita Padilla ◽  
Jacqueline Hecht ◽  
Fernando Poletta ◽  
...  

Abstract Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network (CNN) model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and is able to do so significantly faster than a human rater. For every anomaly except mammalons, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2246
Author(s):  
Tomasz Hachaj ◽  
Anna Stolińska ◽  
Magdalena Andrzejewska ◽  
Piotr Czerski

Prediction of visual attention is a new and challenging subject, and to the best of our knowledge, there are not many pieces of research devoted to the anticipation of students’ cognition when solving tests. The aim of this paper is to propose, implement, and evaluate a machine learning method that is capable of predicting saliency maps of students who participate in a learning task in the form of quizzes based on quiz questionnaire images. Our proposal utilizes several deep encoder–decoder symmetric schemas which are trained on a large set of saliency maps generated with eye tracking technology. Eye tracking data were acquired from students, who solved various tasks in the sciences and natural sciences (computer science, mathematics, physics, and biology). The proposed deep convolutional encoder–decoder network is capable of producing accurate predictions of students’ visual attention when solving quizzes. Our evaluation showed that predictions are moderately positively correlated with actual data with a coefficient of 0.547 ± 0.109. It achieved better results in terms of correlation with real saliency maps than state-of-the-art methods. Visual analyses of the saliency maps obtained also correspond with our experience and expectations in this field. Both source codes and data from our research can be downloaded in order to reproduce our results.


Sign in / Sign up

Export Citation Format

Share Document